Príklad

1.5. Diskrétny systém je opísaný diferenčnou rovnicou

$$y(n) = x(n) - 0.75 \cdot x(n-1) + 0.5 \cdot y(n-1)$$

- a) určte impulzovú charakteristiku tohoto systému
- b) zistite odpoveď sústavy na vstupný signál

$$x(n) = \langle (-1)^n & pre \ n = -1, \ -2, \ -3, \dots \\ (-1)^n & pre \ n = 0, \ 1, \ 2, \dots$$

pre prvých 5 členov

- priamo z diferenčnej rovnice
- pomocou konvolúcie zo známej impulzovej charakteristiky.
- a) **Impulzovú charakteristiku** určíme ako odpoveď systému na jednotkový impulz. Prvých päť členov nekonečne dlhej impulzovej charakteristiky je:

$$\mathbf{h}(n) = \{1, -0.25, -0.125, -0.0625, -0.03125\}$$

b) Prvých päť členov vstupného signálu je:

$$\mathbf{x}(n) = \{1, -1, 1, -1, 1\}$$

Potom priamo z diferenčnej rovnice dostaneme odpoveď sústavy na vstupný signál x(n)

$$\mathbf{y}(n) = \{1, -1.25, 1.125, -1.1875, 1.15625\}$$

Odpoveď sústavy vypočítanej pomocou konvolúcie je v Tab 1.2.

n	0	1	2	3	4	5	6	7	8
x(0)	1,00	-0,25	-0,125	-0,0625	-0,03125				
x(1)		-1,00	0,25	0,125	0,0625	0,03125			
x(2)			1,00	-0,25	-0,125	-0,0625	-0,03125		
x(3)				-1,00	0,25	0,125	0,0625	0,03125	
x(4)					1,00	-0,25	-0,125	-0,0625	-0,03125
y(n)	1,00	-1,25	1,125	-1,1875	1,15625	-0,15625	0,09375	-0,03125	-0,03125

Tab.1.2 Výpočet odpovede **y**(n) pomocou konvolúcie

Odpoveď sústavy na vstupný signál x(n) pomocou konvolúcie je v poslednom riadku Tab.1.2 a prírodzene, je taká istá, ako odpoveď vypočítaná z diferenčnej rovnice, pričom počítali sme iba prvých päť členov výstupného signálu. V prípade, že by sme počítali šiesty člen výstupného signálu y(5) dostaneme rozdielne hodnoty vypočítané pomocou konvolúcie a diferenčnej rovnice. Je to zrejmé z Tab.1.2, ale aj priamo z definície konvolúcie (rov.(1.23)).