
SCTP for Beginners

SCTP Packets

SCTP Data

his section describes the states that an instance of the SCTP
protocol enters while an association is established, and when it is

taken down again. There are a couple of concepts that will need to be
explained here. The initialization of an association is completed on both
sides after the exchange of four messages. The passive side (let's call it
server) does not allocate resources until the third of these messages has
arrived and been validated. That is to ensure that the association setup
request really does originate from the right peer (without the possibility
of blind spoofing).

Normal Association Establishment

The Server Side

The server receives an association setup request (an INIT chunk) usually
in the CLOSED state, and analyzes the data contained in that chunk. From
that it generates all the values needed at its side to enter an established
association, and generates a secure hash of these values and a secret key
(e.g. with the MD5 or SHA-1 algorithms). The values are then put into the
so-called COOKIE, along with the derived message authentication code
(MAC). This COOKIE is returned to the sender of the INIT chunk in an
INIT-ACK chunk. The server remains in the CLOSED state, and forgets
all about the received INIT chunk.

Upon reception of a COOKIE-ECHO chunk (which contains a COOKIE
data structure as parameter), the server unpacks the data contained in this
COOKIE, and uses again the MAC contained therein to verify whether it
was the originator of this COOKIE. If the MAC computes okay, it is a
valid COOKIE that this server had created before, and the data values
contained in the COOKIE are used to initialize the SCTP instance. The
server will send a COOKIE-ACK to the client (optionally bundling a data
chunk with this COOKIE-ACK chunk) and enter the ESTABLISHED
state. It is then ready to accept data or send data chunks itself.

The Client Side

When an Upper Layer (ULP) wants to start an association, it calls the
ASSOCIATE primitive (see SCTP API) and all necessary data structures
are initialized in order to assemble an INIT chunk. This INIT chunk is sent
to one transport address (i.e. combination of IP-address and port) of a
server. An init timer is started that triggers repetitive sending of the INIT
chunk when it expires before an INIT-ACK chunk was received from the
server. If after a configurable number of send events no INIT-ACK was
received, an error is reported to the ULP and peer endpoint is reported
unreachable. After the client has sent the first INIT chunk, it enters the
COOKIE-WAIT state.

When the client receives an INIT-ACK chunk from the server in the
COOKIE-WAIT state, it stops the init timer, assembles an COOKIE-
ECHO chunk, puts the server's COOKIE from the received INIT-ACK
chunk into the COOKIE-ECHO chunk, and returns it to the server. It then
starts a cookie timer, that triggers repetitive sending of this COOKIE-
ECHO, until a COOKIE-ACK is received from the server. After sending
the first COOKIE-ECHO, the protocol instance enters the COOKIE-
ECHOED state. If no COOKIE-ACK is received after a configurable
number of COOKIE-ECHO send events, the server endpoint is reported
unreachable.

After reception of a COOKIE-ACK chunk from the server, the client
enters the ESTABLISHED state. Note that the COOKIE-ECHO may
already be accompanied by a bundled data chunk. It is up tp the server
whether to accept that data chunk or to drop it.

Real Life Examples - Initialization

The picture to the right displays an
INIT chunk that is sent by a client
to a server. The image has been
taken from the program Ethereal
(also see software list on the SCTP
Links page). For details, please
select the image (e.g. by clicking
on it). It displays an INIT chunk
that has been sent by a host with
the IP address 132.252.150.214 to
one with the address
132.252.151.52. The INIT chunk
carries the initiation tag
0x191c240f and requests 15
outbound and 15 inbound streams.
Along with it, it carries the
"Supported Address Types"-TLV

parameter as well as an address
parameter with the IPv4 address of
the client sending this chunk.

The response to an INIT chunk is a
chunk that acknowledges it, and is

called INIT-ACK chunk. Along
with the INIT-ACK chunk, very

similar parameters may be
transmitted. In this example the

server on IP address
132.252.151.52 returns his own tag

0x29e1115e in the INIT-ACK
chunk, along with the number of

inbound and outbound streams it is
willing to accept (both are also 15

here).
Note that the tag in the SCTP

common header is the same as the
tag advertised by the client in its

INIT chunk. Along with the INIT-
ACK chunk a variable length

parameter is sent, the so-called
COOKIE data structure. The

COOKIE must contain all the data
that is needed by a server to

initialize a new association. When
this data structure is created, the
server must not actually allocate

any resources. Only when the very
same COOKIE structure is

returned to the server by the client
that wants to establish the

association, the server may
actually allocate resources for the

new association. To avoid possible
tampering with any data contained
in the COOKIE, this structure also

contains a secure message
authenticatin code (i.e. an MD5 or

SHA-1 hash over the data structure
and a secret key).

The client must then return the
COOKIE data structure to the
server in a so-called COOKIE-
ECHO chunk. The COOKIE-
ECHO chunk contains the very
same variable length parameter as
the INIT-ACK chunk. According
to the RFC2960 the client may
already transmit a DATA chunk
after the COOKIE-ECHO chunk,
which is not done here, though. As
soon as the COOKIE-ECHO
chunk is received by the server, it
verifies the COOKIE structure
(using the hash function and its
secret key), and uses the data
contained therein to initialize an
appropriate association structure. It
then notifies its user process with a
COMMUNICATION-UP
notification, and returns an
acknowledgement to the client.

The server sends back a very
simple acknowledgement of the

COOKIE reception to the client, a
so-called COOKIE-ACK chunk.

Along with this chunk, it may
already transmit data chunks,

which is, however, not done here
in the example to the left. After the

client has received a COOKIE-
ACK chunk, it will notify its user

process of the successful
association establishment with a

COMMUNICATION-UP
notification. At this point, both

sides know that the association is
established and may start normal

data transmission and heartbeating
(see the SCTP Data Transmission

and SCTP Multihoming pages).

Association Termination
Both sides may decide to terminate an SCTP association for a number of
reasons, and can do so practically at any time (provided they are in a state
that is not CLOSED :-) There is the possibility of a graceful shutdown,
ensuring that no data is lost, or hard termination, not taking care of the

peer.

Graceful Termination of an Association

Upon receiving the SHUTDOWN primitive from its upper layer user
process, an SCTP instance should stop accepting data from this process,
and start sending a SHUTDOWN chunk, as soon as all of its outstanding
data has been acknowledged. This process is secured by a timer, that
repeats this process, should the SHUTDOWN be lost.
The peer will, at one point, receive the SHUTDOWN, and reply by
sending a SHUTDOWN ACK chunk, as soon as all of its data has been
acknowledged (also secured by a timer !).
When the first peer (that started the shutdown procedure) receives the
SHUTDOWN ACK, it will stop the timer, send a SHUTDOWN
COMPLETE, and remove all data still belonging to that association, and
enter the CLOSED state.
The peer that receives this SHUTDOWN COMPLETE chunk may then
also remove all record of this association, and enter the CLOSED state.
Should the last SHUTDOWN COMPLETE message be lost, the peer will
repeat sending SHUTDOWN ACK chunks, until an error counter has been
exceeded, which reports the other peer unreachable.

Aborting the Association

An endpoint may also decide to abort an existing association, taking into
account that data still in flight may not be acknowledged, by sending an an
ABORT chunk to its peer endpoint. The sender MUST fill in the peer's
Verification Tag in the outbound packet and MUST NOT bundle any
DATA chunk with the ABORT.
The receiver of the ABORT does not reply, but validates the chunk, and
removes the association, if the ABORT contains the correct tag value. If
so, it also reports termination to its uppler layer process.
Should the ABORT be lost, and the endpoint sending it terminate directly
after sending it, it will take a rather long time to determine that the peer
has gone (i.e. after the Peer Error Counter has been exceeded).

Special Cases
There are a number of special cases that need to be considered. These
occur, when one endpoint is interrupted, restarted etc.
Sections 5.2.4 and 9 of RFC2960 describe the handling of these cases:

• Peer restart case, where the peer uses a new tag value.
• Cross initialization, where both peers send an INIT chunk at about

the same time.
• Excessive delay of COOKIE chunks, etc.
• One peer trying to re-establish an association, while the other one

tries to terminate it.

