Part I�System Design Considerations

Overview

Introduction�Part I summarizes the system design considerations to be used in developing SET toolkits and applications. It is intended to provide background information as well as to introduce the salient features and notation that will be used in subsequent parts of this Programmerís Guide.��

Audience�It is assumed that the reader will be developing software for cardholder and merchant systems. There are instances when requirements specific to the Payment Gateway and Certificate Authority systems are stated. These additional requirements, however, are informative and intended to assist the reader in understanding the processing performed by these systems. In addition to the requirements stated in this document, each brand will have its own specific implementation requirements.

It is also assumed that the reader:

is familiar with the business requirements defined in Book 1: Business Description of the SET specification, and

possesses a general understanding of cryptography and networking protocols.��

Payment card�To facilitate the use of SET in other card-based payment environments, the term ìpayment cardî is used throughout the remainder of this Programmerís Guide to collectively refer to any of the following: credit card, debit card, charge card, and bank card.��

Terminology�Throughout this document, the verb ìshallî indicates a requirement that is imposed by this Programmerís Guide and ìwillî indicates either a goal or an implicit requirement that is imposed external to SET. ìMustî indicates a requirement that is imposed external to SET, such as by export requirements.

In processing steps, ìshallî is normally implicit. That is, unless otherwise indicated, an instruction such as ìverify xî is equivalent to ìthe application shall verify x.î

The sequence of processing steps may be varied so long as the results are the same.��

Transport Mechanisms�Transport mechanisms used to implement SET are out of scope of this document, but two classes are recognized: interactive and non-interactive. The World Wide Web is an interactive mechanism, and electronic or postal mail are non-interactive mechanisms.��Continued on next page

��styleref "Map Title"�Overview�, continued

Organization�Part I includes the following chapters:��

Chapter�Title�Page��1�� REF P1C1 * MERGEFORMAT �Introduction��� PAGEREF P1C1 �3���2�� REF P1C2 * MERGEFORMAT �System Architecture��� PAGEREF P1C2 �25���3�� REF P1C3 * MERGEFORMAT �Technical Requirements��� PAGEREF P1C3 �38���4�� REF P1C4 * MERGEFORMAT �System Concepts��� PAGEREF P1C4 �57���

�Chapter 1�Introduction

Overview

Introduction�Chapter 1 provides background information and an overview of the payment processing.��

Organization�Chapter 1 includes the following sections:��

Section�Title�Contents�Page��1�� REF P1C1S1 * MERGEFORMAT �Background��Provides background information with emphasis on the scope of SET.�� PAGEREF P1C1S1 �4���2�� REF P1C1S2 * MERGEFORMAT �Environment��Describes the environment for processing payment card transactions using SET.�� PAGEREF P1C1S2 �7���3�� REF P1C1S3 * MERGEFORMAT �Capture Process��Provides an overview of the batch capture processing.�� PAGEREF P1C1S3 �10���4�� REF sect_business_flows * MERGEFORMAT �Business Flows��Provides a high-level description of typical business flows relevant to SET. �� PAGEREF sect_business_flows �17���

�Section 1�Background

Scope

The scope of this document is limited to the payment process and the security services necessary to support the payment aspects of the electronic shopping experience. To provide these services, SET defines not only the electronic payment protocol, but also the certificate management process.

� REF _Ref369513897 * MERGEFORMAT �Figure 1� below depicts the SET payment system participants and their interactions.

�

Figure � SEQ Figure * ARABIC �1�: Payment System Participants

In the electronic commerce environment, new opportunities for merchants to conduct business will emerge due to the increased exposure and access by consumers for information about their products and services. Consumers will be able to shop, access information, and pay for goods and services. Unlike a face-to-face or mail order/telephone order transaction, the electronic processing of the payment begins with the cardholder rather than the merchant or the Acquirer. With these new opportunities, there will be new challenges that need to be addressed in order to facilitate payment via electronic shopping in a secure manner.��Continued on next page

��styleref "Map Title"�Scope�, continued

Electronic shopping�Electronic shopping will typically proceed through the following phases. SET supports three of these phases: a) payment authorization and transport, b) confirmation and inquiry, and c) merchant reimbursement.

Browsing and Shopping

Merchant and Item Selection

Negotiation and Ordering

Payment Selection

SET (Payment Authorization and Transport

SET (Confirmation and Inquiry

Delivery of Goods

SET (Merchant Reimbursement��

Goods and services�The cardholder decides to start shopping for an item. Items shopped for might be tangible goods, electronic media (for example, information, software, etc.), or services.��

Assumptions�The bit stream for the order description and purchase amount at the merchant is identical to the bit stream for the order description and purchase amount at the cardholder.

The cardholder and merchant software shall agree on a specific protocol (and therefore representation of this data) before SET is invoked.

Transaction information (for example, capture tokens or certificate responses) will not be stored by SET software indefinitely, particularly when processing credit and reversal transactions. Payment brand operational guidelines will specify minimum time periods for storage of information on merchant and payment gateway systems that must be supported.��Continued on next page

��styleref "Map Title"�Scope�, continued

Processing�SETís relationship with the other phases of the electronic shopping model is described in the following table. SET focuses on phases 5, 6, 7, and 9.��

Phase�Description��1�The cardholder browses for items. This may be accomplished in a variety of ways, such as:

using a browser to view an on-line catalog on a merchantís World Wide Web page;

viewing a catalog supplied by the merchant on a CD-ROM; or

looking at a paper catalog.��2�The cardholder selects items to be purchased from a merchant.��3�The cardholder is presented with an order form containing the list of items, their prices, and a total price including shipping, handling, and taxes.

This order form may be delivered electronically from the merchantís server or created on the cardholderís computer by electronic shopping software.

Some on-line merchants may also support the ability for a cardholder to negotiate for the price of items (such as by presenting frequent shopper identification or information about a competitorís pricing).��4�The cardholder selects the means of payment.

SET focuses on the case when a payment card is selected.��5�The cardholder sends the merchant a completed order along with a means of payment.

In SET, the order and the payment instructions are digitally signed by cardholders who possess certificates.��6�The merchant requests payment authorization from the cardholderís financial institution via acquirer. If authorization succeeds, the merchant may send confirmation of the order out of band to SET.��7�The merchant ships the goods or performs the services requested from the order.��8�The merchant requests payment from the cardholderís financial institution via acquirer.��

�Section 2�Environment

Processing Overview

Mail order/ telephone order�The processing of transactions using this Programmerís Guide generally follows that of the Mail Order / Telephone Order (MOTO) environment. In such a transaction, order and payment information is transmitted to the merchant either by mail or by telephone in contrast to a ìcard presentî transaction when a customer is making a purchase at the merchantís store.

Description: The information that follows is a brief description of a simplified MOTO processing model.

Variations: There are many variations on this processing model, but the following represents a typical exchange.

Environment: By using the protocol described in this Programmerís Guide, the interactions between the customer and the merchant can occur in an interactive environment, such as the World Wide Web, or through non-interactive means such as electronic or postal mail exchanges.��

Shopping�The flow of activity begins when the shopper (cardholder) contacts a merchant to request a list of the goods and services offered. The customer shops from this list.��

Ordering�The cardholder selects items, prepares an order and sends it to the merchant, who receives and processes the order.��

Inventory�The merchant checks inventory to determine if the goods and services ordered by the customer need to be back-ordered. The merchant may decide to handle the order as a split shipment.��

Authorization request�The merchant sends an authorization request to its financial institution (Acquirer). The Acquirer incorporates the authorization data into a request that is sent via a payment network for processing by the financial institution (Issuer) that issued the payment card to the cardholder.��Continued on next page

��styleref "Map Title"�Processing Overview�, continued

Authorization response�The Issuer responds to the Acquirer via the payment card network with an authorization response. The response includes an indication of whether the authorization request has been approved. The Acquirer responds to the merchant with the outcome of processing.��

Shipping�The merchant delivers the goods and services to the customer. The time delay between authorization and shipment (which shall precede capture) can legitimately be several days. Many MOTO merchants are not able to check inventory before authorization. If goods are not available for immediate delivery, the shipment is held up until the order can be fulfilled.��

Capture processing�The merchant submits a capture request to the Acquirer in order to obtain payment. This request is sent through the payment card network to the Issuer.��

Credit processing�If a credit is to be issued to a customer, such as when the goods are returned or defective, the merchant sends a message to the Acquirer requesting a credit be issued to the cardholderís account.��

Combined authorization and capture�At its option, the Acquirer may allow the merchant to combine the authorization and capture messages into a single message.��

Merchantís processing�At its option, the Acquirer may allow the merchant to initiate the administration and reporting functions related to capture processing.��Continued on next page

��styleref "Map Title"�Processing Overview�, continued

SET and MOTO�Figure 2 illustrates how SET and MOTO work together.�� �

Figure � SEQ Figure * ARABIC �2�: SET / MOTO Comparison

�Section 3�Capture Process

Overview

Purpose�This section provides a high-level description of the batch capture processing models relevant to SET.��

Types�The types of batch capture processing models include the following:

Merchant Terminal Data Capture

Acquirer Host Data Capture��

Audience�This information is intended primarily for developers of merchant software.��

�Batch Capture Processing

Introduction�SET batch capture processing supports the following:

A payment gateway connected to an Acquirer host.

A payment gateway connected to an intermediate capture system.

Processing performed out of band to SET.��

Identifying batches

�The Merchant, payment gateway, or Acquirer assigns each SET transaction to a specific capture batch and also assigns:

An integer to identify a batch.

A unique integer to each item within a batch.��

Access to batches

�The Merchant, Acquirer, or Payment Gateway is able to open a capture batch. For batches opened by the Acquirer or Payment Gateway, the batch shall only be closed by the Acquirer or Payment Gateway. For batches opened by the Merchant, the batch may be closed by the Merchant, Acquirer or Payment Gateway.

For batches opened by the Merchant, the Merchant can add items to and remove items from an open capture batch, purge all of the items from an open batch, and close the batch.��

Merchant Inquiries�The Merchant can inquire of the Acquirer or Payment Gateway to determine the status of:

A batch and the items within a batch (batch items may be capture or credit requests).

The transmission of batch information from the gateway to the next upstream system.

The Merchant can send or receive batch totals and item details to (or from) the Acquirer or Payment Gateway.��

Out-of-band capture requests�For merchants processing capture requests out of band to SET, the authorization response must include all data necessary to clear the transaction at the best available interchange rate, based on the characteristics of the authorization.��

�Terminal Data Capture

Overview�Terminal Data Capture (TDC) occurs when a merchant re-presents previously authorized transactions (authorization request/response data) to a Payment Gateway as a request for payment of those transactions. Although transactions are accumulated in a batch by the merchant, each transaction submitted is evaluated individually and may be accepted or rejected for payment processing. The batching of transactions is used for processing efficiency. The gateway (or receiver) needs to ensure that each transaction sent by the merchant was received by the gateway. This is done through the use of transaction identifiers to match up authorization and capture, either TransIDs.XID, or an alternate identifier such as TransIDs.LID�M if available and agreed to by merchant and payment gateway. By grouping multiple transactions into a batch, the overhead of handling individual request/response pairs is avoided.��

Batch Balancing�Batch balancing may be performed by the Merchant after requesting batch details from the Payment Gateway, or by the Payment Gateway on receipt of batch details from the Merchant. Batches are balanced using the Merchant assigned BatchID.��

Transaction tracking using TransIDs�For TDC, transaction tracking begins when the transaction is first created during the PInitReq or PReq messages. These are used by the merchant to identify and track each action on the transaction back to the original PInitReq or PReq and relates the authorization and capture. Within merchant Point Of Sale (POS) software, PANs or transaction identifiers may optionally be used to match authorization responses to authorization requests.��Continued on next page

��styleref "Map Title"�Terminal Data Capture�, continued

Initiate capture�In TDC, the same TransIDs are employed from authorization through the completion of clearing. (This facilitates investigation, research, etc., since to re-assign would necessitate a cross-reference.) The TransIDs to be associated with each individual transaction is provided by the merchant in the capture request.��

Include in capture�It is expected that all authorized transactions will be captured. When this is not to be the case, or if the merchant submits clearing transactions outside SET, the merchant shall not submit those TransIDs for capture.��

Change amount�If the transaction amount is to change between authorization and capture, or if clearing is to be handled outside the definition of SET, the TransIDs shall identify the transaction in which to change the amount.��Continued on next page

��styleref "Map Title"�Terminal Data Capture�, continued

Merchant batching�For TDC, there are two concepts of merchant batching. The first is for the merchantís operational reason. For example, a merchant might want to know how much was collected between noon and 1 p.m. The merchant may create a batch and accumulate all transactions to that batch. All transactions in this batch should use a common merchant batch identifier.

The second batching concept is of special interest to SET, and occurs when a merchant groups authorized transactions for the purpose of draft capture, and assigns a common BatchID to these transactions. A batch in this instance consists of those individual transactions (TransIDs as defined above) for which the merchant is requesting payment, and has allocated a common BatchID.��

Batch identification�The merchant shall use the BatchID to designate the batch and its contents. In TDC each capture request CapReq associates transactions with one or more SET batches referenced by BatchID. A SET batch may consist of a single sequence number, representing one authorized transaction, or many sequence numbers representing multiple authorized transactions.��

Payment Gateway processing�At the option of the Acquirer / Payment Gateway or through payment card brand mandates, data from the original authorization request/response pair may beaugmented with the PAN expiration date and capture token to be included in a capture message, and sent out of band for capture processing by the financial network.

The use of a capture token is optional, based on the requirements of individual payment card brands or acquirers. Merchants using out-of-band clearing or normal transaction processing will most likely bypass the use of capture tokens in favor of PAN tokens. Cryptographic treatment differentiates capture tokens from PAN tokens. The capture token blinds the merchant to the data, the PAN token is encrypted so that the PAN data may be recovered by the merchant.

When the Payment Gateway receives a data capture response from the Issuer to its data capture requests from the SET financial network, it generates the SET capture response (CapRes) message back to the Merchant.

Refer to the processing descriptions in ì� REF P3C3S2 * MERGEFORMAT �Capture Request/Response�î on page � PAGEREF P3C3S2 �374� for additional information.��

�Host Data Capture

Definition�Host Data Capture (HDC) is a feature that allows merchant terminals to process card transactions and have those transactions submitted to clearing without having to support an out-of-band transaction deposit.��

Overview�Essentially, the transaction is logged by the Acquirer host system and assigned to a physical or logical batch depending upon the Acquirer application, the method of accounting of the merchant, and the relationship between the merchant and the Acquirer (that is, the merchant may submit MasterCard and Visa transactions through the Acquirer for 1-day credit, Discover transactions through the Acquirer for 3-day credit, and submit American Express transactions directly to American Express). The Acquirer may log all of these transactions into separate batches by brand, or into a single batch that is submitted at the end-of-day. (Note that multiple brands may be in the same batch, but not in the same capture request.)��

Batch balancing�Batch balancing is performed by the merchant by adding the receipts at the point of service and comparing that amount to the batch total(s) at the host. If the amounts are the same, the batch balances. If the amount differs, the merchant may be able to examine each transaction through a look-up based on account number, transaction ID, amount, or various combinations of those elements.��

HDC types�HDC merchant transactions can occur as ìauthorizationî transactions followed by ìcaptureî transactions or as single ìsaleî transactions.��

Authorization/

and later capture�The merchant requests transaction authorization (which may be for an approximate amount) followed by a capture amount to be submitted in lieu of a paper draft for merchant payment (deposit of funds to the merchant bank account). This method is often used when the final amount of the transaction is not known (that is, shipping and handling not calculated). The merchant needs authorization to continue the transaction and to verify that the account number is valid and assurance from the Issuer that there is not a problem with the account and amount. When the exact amount of the transaction is known to the merchant and the transaction is ìcompleteî (that is, the order has been shipped) a ìcaptureî transaction may be sent to the Acquirer for merchant payment.��

Sale�ìSaleî transactions are single transactions that combine the ìauthorizationî and ìcaptureî transactions. Sale transactions are used when the exact amount of the transaction is known at the time of purchase and the transaction is complete (for example, software purchase and download, purchase of network services, etc.).�� Continued on next page

��styleref "Map Title"�Host Data Capture�, continued

Batching�Batching of transactions, as indicated above, is handled on the Acquirer host system. Transactions are assigned a transaction ID by the Acquirer host system and placed into a batch as determined by the criteria above. Batch balancing options vary by software vendor and merchant agreement. Merchants usually balance by adding or deleting transactions, or modifying transactions.��

End-of-day reporting�At the end-of-day (or end-of-batch) the batch is balanced, closed, and submitted to the Acquirer clearing process. Reconciliation reports are generated at the time of submission, and may also be created to support batch balancing and other reconciliation requirements.��

Deposit reporting�Certain systems will also provide deposit reports to the merchant to support the need of the merchant to track deposit information (when deposits are made to the merchant bank accounts and when those amounts will be ìcollectedî and available to the merchant).��

�Section 4�Business Flows

Overview

Purpose�This section provides a high-level description of typical business flows relevant to SET.��

Introduction�The cardholder, using a PC, shops by visiting a site on the World Wide Web or choosing an item from an online catalog. For this description, it is assumed that the cardholder has a certificate, having previously registered for electronic commerce. The shopping experience itself is outside the scope of SET.

When the cardholder decides to make a purchase, the transition from the shopping phase to the SET processing phase begins, which ensures the cardholder of a secure electronic transaction.

The purchase transaction itself may take place in a number of ways, depending on how the cardholder want to arrange for the purchase and on the merchant’s business situation. For example:

The cardholder may want to arrange for payments on an installment plan

The order may be for tangible goods and the merchant may be out of stock on one or more of the items ordered, but able to ship the rest

The order may be for non-tangible good, such as a video clip that can be delivered electronically—in which case the merchant can readily process both the authorization and capture request for payment from the Acquirer.

This section illustrated a range of typical business scenarios, which are enabled by SET processing according to the specific circumstances of a purchase. The first scenario described is the most typical—authorize now and capture later. It is followed by variations based on specific business conditions.��

Audience�This information is intended primarily for Acquirers, Merchants, and developers of Merchant software.��

�Typical Business Scenarios

Overview�The scenarios described include the following:

Authorize now and capture later

Authorize and capture now: Sale Request

Authorize now and capture later; partial reversal for a new amount

Partial reversal with no brand support

Split shipment

Installment payments or recurring payments

A credit for an old transaction��

�� REF _Ref389635834 * MERGEFORMAT �Figure 3� is a state diagram that illustrates SET business flow messages. It shows, at a high level, the transitions from shopping to ordering and processing of the order, with the processed state shown in two variations: “sale processed” in the case of an order that is authorized and captured at the same time, and “captured” for an order that is authorized now and captured later. The figure also shows the processing of a credit from both of these states. The message pairs are implicit in this diagram; for example, AuthReq represents both the authorization request and the response message.

In this scenario, there are transitions from one state to another, for example, from the ordered state to the sale processed state. Once the PReq message is processed, any transition that follows it can be reversed, with the effect of returning to the previous state. For example, when receiving an order, the merchant submits an authorization request; a subsequent authorization reversal request would take the transaction back to the ordered state. There is one exception, which is when a transaction is authorized and followed by a partial reversal to provide for a new amount.

Not all orders are authorized—for example, the merchant doesn’t request authorization when an order is received for an item that is out of stock and will no longer be carried.��Continued on next page

��styleref "Map Title"�Typical Business Scenarios�, continued

Business flows��

Figure � SEQ Figure * ARABIC �3�: Business Flows��Continued on next page

��styleref "Map Title"�Typical Business Scenarios�, continued

Authorize now and capture later�For the most typical online purchase, the merchant is ready to authorize the transaction now, but wants to submit the capture request later. For example, many merchants prefer to collect their capture requests and submit them in batches at the end of the business day.

After the cardholder creates an order, the cardholder software sends the PReq message as a commitment to place an order (refer to the figure). This message and its response encompass the actual payment between the cardholder and the merchant, and take the cardholder from the shopping state to the ordered state. The PReq message includes:

An Order Instruction (OI) from the Cardholder for the Merchant.

The Payment Instruction (PI) from the Cardholder, encrypted and tunneled through the Merchant to the Payment Gateway.

The purchase response (PRes) message may be returned to the Cardholder immediately or any time later in the protocol. The information returned will depend upon the stage of processing in the protocol at which the purchase response is returned from the Merchant (for example, order received, transaction authorized, or transaction captured).

The merchant sends an authorization request to the Payment Gateway, but does not set the CaptureNow flag to true, as a capture request will be processed later. The authorization request indicates whether the merchant expects to do another authorization for a split shipment, recurring payment, or installment payment (discussed later in this section). If an authorization reversal is needed, it will return the transaction to the ordered state.

The merchant now has a commitment for payment from the issuer, but will need to process the capture request in order to be paid. The capture request may include multiple capture items, unless the account number is sent. It shall include a capture token if one is provided in the authorization response.

The capture request moves the transaction to the captured state, at which point the order is processed. A capture reversal may be sent; this will return the transaction to the authorized state. A partial authorization reversal may be used to change the amount after the authorization, returning the transaction to the authorized state—see the explanation of a partial authorization reversal later in this section.

Later, the cardholder may request a credit for the order—for example, if the cardholder decides to return the order because it was damaged in shipment. In this case a credit request is processed, moving the transaction from the sale processed state to the credit issued state.

Unlike a reversal, a credit is processed after an order is completed and shipped, and results in a credit on the cardholder’s statement.��Continued on next page

��styleref "Map Title"�Typical Business Scenarios�, continued

Authorize and capture now: Sale Request�The Sale Request is used when the Merchant knows the item ordered is in stock and can be shipped right away, once the authorization is received. A Sale Request is also used for purchase of non-tangible goods available electronically—such as video clips, encyclopedia pages, and software programs—for which there is no question of inventory so the order can be fulfilled immediately.

SET allows a merchant to process the transaction as a single message by setting the CaptureNow flag in the authorization request to true. This indicates that if the transaction can be authorized, the capture should be done now, as well. In effect, it is a combined authorization and clearing.

When the Payment Gateway processes the request, there is a transition to the sale processed state. From a financial perspective, the sale processed state is equivalent to the captured state mentioned above.

Again, if there is a need to return money to the cardholder, a credit request moves the transaction into the credit issued state.��

Authorize now and capture later: partial reversal for a new amount�In this scenario, the merchant sends an authorization request for the amount of the order, but later needs to revise the amount—for example, to factor in the charges for shipping and handling, which were not available when the initial authorization was submitted. The merchant sends an authorization reversal request with the new amount.

Note that some brands do not support partial reversals. In this case, the Payment Gateway may generate an AuthRevRes message with the appropriate value from the AuthRevReq, without sending a message to the financial network.��Continued on next page

��styleref "Map Title"�Typical Business Scenarios�, continued

Split shipment�When the merchant cannot fulfill the entire order, the items in stock are shipped and the remaining items are backordered.

The merchant may set the subsequent authorization indicator to tell the system that there is a business need for a subsequent authorization.

In this case, the payment gateway returns an AuthToken in the authorization response. The AuthToken serves the same purpose as the payment instruction, except that it originates with the payment gateway and is a means of allowing one additional authorization.

When the need for a split shipment is known at the time of authorization (for example, when the item is out of stock), a first authorization request is followed by a capture request for the item(s) to be shipped now; this is followed by another authorization request and capture request when the remaining items are available.

When the need for a split shipment is determined after the initial authorization, an authorization reversal is used to change the amount; it includes a capture token to be used for the subsequent authorization and capture.��Continued on next page

��styleref "Map Title"�Typical Business Scenarios�, continued

Installment and recurring payments�The merchant may offer customers the option of paying in installments—for example, three monthly payments. Or, the merchant may offer to process payments on a regular basis—for example, an Internet service provider may offer to bill the cardholder’s account for the monthly service charge with no action needed by the cardholder.

The merchant presents the installment or recurring payment option, which is then indicated by the cardholder in the PReq message. In general, the payment instruction from the cardholder may only be used for one authorization request, unless the cardholder explicitly says that the merchant will need to do multiple authorizations. In this case, the payment instruction will provide for additional authorizations.

The merchant sets the subsequent authorization indicator to alert the system that there is a business need for subsequent authorization. The payment gateway returns an AuthToken in the authorization response, which will allow one additional authorization in place of the next payment instruction. Then, as each authorization request is completed, the payment gateway includes an AuthToken for the next authorization—until the authorization for the final installment is processed, when no AuthToken will be returned.��

Credit for an old transaction�A cardholder may submit a request for credit after all data relating to the original transaction has been purged from the merchant’s logs—individual Acquirers will establish with their merchants recommended times for data to be retained. SET supports the processing of a credit when the merchant no longer has the information about the original transaction; in this case, the credit data will need to be key-entered.

SET also supports the processing of a credit to a different account than that used to pay for the order—for example, if a cardholder returns a gift and requests a credit to their account, rather than to the account of the person who purchased the gift. Again, the credit data must be reentered.��

�Additional Information

Account numbers�SET allows the Payment Gateway to determine whether or not the merchant may receive the cardholder account number as part of the response. If the Acquirer decides not to return the account number, it needs to ensure that the Merchant has an alternative means of matching a chargeback to the original transaction.

The transaction contains a number of fields that can be used:

XID—a 20-byte number that uniquely identifies the transaction, including all authorization and clearing messages for a single order.

RRPID—a 20-byte number that uniquely identifies a request—a single authorization or clearing message.

localID-M—a 1 to 20-byte local identifier assigned to the transaction by the merchant software. Depending on the implementation, this may be a tracking number assigned by staff operating the system or an internal number used solely by the Merchant software.

paySysID—a 1 to 64-byte Transaction Identifier.

MerOrderNum—a 1 to 25-byte merchant order number.��

�Chapter 2�System Architecture

Overview

Introduction�Chapter 2 provides an overview of the system architecture.��

Organization�Chapter 2 includes the following sections:��

Section�Title�Contents�Page��1�� REF P1C2S1 * MERGEFORMAT �System Overview��Provides a high-level overview of the SET architecture.�� PAGEREF P1C2S1 �26���2�� REF P1C2S2 * MERGEFORMAT �Security Services��Describes the security features and certificates provided with SET.�� PAGEREF P1C2S2 �31���

�Section 1�System Overview

Architecture

SET entitiesentities�The SET system is composed of a collection of entities involved in electronic commerce. The collection consists of:

Cardholder, an authorized holder of a payment card supported by an Issuer, and registered to perform electronic commerce;

Merchant, a merchant providing goods, services, and/or information who accepts payment for them electronically, and may provide selling services and/or electronic delivery of items for sale such as information);

Issuer, a financial institution that supports issuing payment card products to individuals;

Acquirer, a financial institution that supports merchants by providing service for processing payment card transactions;

Payment Gateway, a system that provides electronic commerce services to the merchants in support of the Acquirer, and interfaces to the Acquirer to support the authorization and capture of transactions;

Brand, a franchiser of payment systems / instruments;

Certificate Authority (CA), an agent of one or more payment card brands that provides for the creation and distribution of electronic certificates for cardholders, merchants, and payment gateways; and

Payment card brandís financial network, the existing private network operated by a payment card brand that links Acquirers and Issuers.��

Protection of information�SETís architecture is designed to protect the transmission of financial information involved with a payment transaction between a cardholder, merchant, and Acquirer. It does not impose requirements on the transmission of the transactionís order information. Vendors developing shopping and ordering applications and protocols are strongly encouraged to protect this order information.�� Continued on next page

��styleref "Map Title"�Architecture�, continued

SET cardholder�The SET cardholder is represented in SET by a workstation. This provides the cardholder with the flexibility to shop and conduct negotiations with merchant systems offering items for sale. The workstation may support all phases of the electronic shopping model described on page � PAGEREF block_electr_shopping_model �6�. In supporting SET, the workstation has the functionality to support the payment process.��	

Cardholder interfaces�The cardholderís primary interface in SET is to merchant systems. This interface supports the cardholderís portion of the payment protocol, which enables the cardholder to initiate payment, perform inquiries, and receive order acknowledgment and status.

The cardholder also has an indirect interface to the Acquirer through the merchant system. This interface shall support encrypted data fields that are sent via the Merchant to the Acquirer, but can only be decrypted by the Payment Gateway. This enables the Acquirer to mediate interactions between the cardholder and Merchant, and by so doing provide security services to the cardholder. These security services ensure that the cardholder is dealing with a valid, payment card-approved merchant.

Depending upon the policies established by the payment card brand, the cardholder may also interface with a Cardholder CA (CCA) to request and renew public key certificates that support electronic commerce security functions. Performing cryptographic functions in hardware cryptographic modules is recommended, but not required. Secret key generation and storage using tamper resistant hardware cryptographic modules such as smart cards is encouraged.

In addition, the cardholder system shall support security services (integrity, authentication, certificate management as prescribed by SET), and shall support the shopping, payment selection, and communications functions.��Continued on next page

��styleref "Map Title"�Architecture�, continued

Merchant interfaces�The SET merchant computer system provides a convenient interface to the cardholder for the support of electronic payments. In addition, the merchant interfaces with the Acquirer using the payment protocol to receive authorization and capture services for electronic payment transactions. The merchant shall interface with the Merchant CA (MCA) to request and renew public key certificates that support electronic commerce security functions.

The merchant shall support SET protocols for the authorization of electronic commerce transactions initiated by the cardholder. It is expected that the Merchant system will also support captures as well. In addition, the merchant system shall support security services (integrity, authentication, certificate management). Merchant systems shall support the shopping, payment selection, and communications functions. Performing cryptographic functions in hardware cryptographic modules is strongly recommended, but not required. Secret key generation and storage using tamper resistant hardware cryptographic modules such as smart cards is strongly encouraged. Payment card brand requirements for a specific implementation and environment in which the merchant server may operate will dictate requirements for the use of hardware cryptographic support.��Continued on next page

��styleref "Map Title"�Architecture�, continued

Payment gateway�The payment gateway system is operated by the Acquirer. It shall provide electronic commerce services to the merchants in support of the Acquirer, and shall interface with the payment cardís financial network to support the authorization and capture of transactions. The payment cardís financial network interface is largely unchanged from the interface supporting Acquirers today. The Payment Gateway shall also interface with the Payment Gateway CA (PCA) for requesting and renewing public key certificates to support the electronic commerce security functions. It shall support the distribution of certificate revocation lists (CRLs) on behalf of the brand and financial institution. Cryptographic functions shall be performed in hardware cryptographic modules. In addition, secret key generation and storage shall use tamper resistant hardware cryptographic modules.��

Acquirer�An Acquirer is the financial institution (or its agent) that supports the merchant activity through account relationships with merchants. The Acquirer is responsible for gathering the financial data related to the transaction in order to obtain authorization for payment from the cardholderís Issuer.��

Issuer�An Issuer is the financial institution that establishes an account for a cardholder and issues the payment card. The Issuer guarantees payment for authorized transactions using the payment card. The processing and interface to the Issuer is out-of-band from SETís perspective.��

Third party processor�In some environments, Issuers and Acquirers may choose to assign the processing of payment card transactions to third party processors. This Programmerís Guide does not distinguish between the financial institution and the processor of the transactions.��Continued on next page

��styleref "Map Title"�Architecture�, continued

Certificate management�Certificate Management consists of one or more trusted CA systems that support the issuance and renewal of public key certificates for cardholders, merchants, and Acquirers. In addition, SETís architecture defines a trusted hierarchy of CA systems that begins with a Root CA (RCA), then a Brand-specific CA (BCA) and an optional Brand Geo-political CA (GCA). For example, the CCA systems interface with Issuers to authenticate requests for certificates. Refer to ì� REF P2 * MERGEFORMAT �Certificate Management�î (starting on page � PAGEREF P2 �113�) for details on certificates and certificate formats, certificate issuance, renewal, CRLs, and other certificate management functions. Cryptographic functions shall be performed in hardware cryptographic modules. Secret key generation and storage shall use tamper-resistant hardware cryptographic modules. Certificate management shall be performed in a secure physical environment compliant with payment card brand standards.��

Payment card brandís financial network�The payment card brandís financial network is the existing private network through which Acquirers obtain authorization for payment from Issuers. VisaNet and Banknet are examples of these types of networks. These networks are protected by each payment card brand and provide messaging interfaces (such as ISO 8583 formatted messages).��

�Section 2�Security Services

Overview

Purpose�This section provides a brief summary of fundamental security services and certificates provided in SETís architecture.��

Organization�This section includes the following topics:

Services

Certificates

Brand CRL Identifier��

�Services

Confidentiality�SET provides confidentiality by employing both asymmetric and symmetric data encryption algorithms to protect financial information from eavesdroppers.

As an option, confidential Acquirer-to-cardholder messages are provided. This feature is intended for Issuers to communicate back to cardholders about the reason that a transaction is being declined or to request that the cardholder call the Issuer.��

Authentication�SET provides authentication of a messageís origin by employing digital signature verification algorithms when signature certificates are available. ��

Integrity�SET provides integrity by employing one-way cryptographic hashing algorithms and digital signatures to ensure that a message was not modified in transit.��

Linkage�SET provides a linkage mechanism for verifying that a message contains a reference to another message by verifying an embedded link using a one-way cryptographic hashing algorithm.��

Caveat�SET does not provide non-repudiation. It is the intent to permit non-repudiation via rules and policies of individual payment card brand implementations.��

�Certificates

Purpose of certificates�A digital signature cryptographically binds the signed data with an unique private key, which is assumed to be under the exclusive control of the cardholder, merchant, financial institution, or CA as appropriate. The private key is mathematically linked to the public key of the key pair. Assuming that the private key has not been compromised, the digital signature has the effect of binding the public key to the data as well. However, anyone can generate a public/private key pair, and so it is essential that some mechanism be established that binds the public key to the entity in a trustworthy manner. This is the fundamental purpose of a certificate – to bind a public key to a uniquely identified entity.

In the case of the cardholder, the signature certificate implicitly binds the public key to the cardholderís primary account number (PAN), but the PAN is effectively obfuscated by using a blinding technique so that only the CCA, the cardholder, and the Issuer know the account number. The cardholder passes the account number and a secret variable to the Acquirer, so that the Acquirer can then verify the card number against the blinded value contained in the cardholderís certificate. In order to protect the cardholderís confidentiality, the cardholderís name is not included in the certificate. In effect, the blinded account number is a pseudonym of the cardholder.

Since a bogus Certificate Authority could be set up to create certificates that would contain information nearly identical to that contained in a valid certificate, the signature of the Certificate Authority itself shall be certified as authentic by a higher level Certificate Authority. The only exception to this requirement is the industry root Certificate Authority. It is the only directly trusted Certificate Authority.��Continued on next page

��styleref "Map Title"�Certificates�, continued

Cardholder certificates�One function of the Acquirer is to ensure that the private key used to sign a payment is, in fact, associated with the right payment card account. To avoid revealing the cardholderís PAN to third parties, the number is hidden using a keyed-hashing mechanism as a blinding function. The result of this function is what is stored in cardholderís certificates.

The SET architecture allows cardholders without signature certificates to conduct SET transactions. This is an interim option intended only for use in situations where the cardholderís issuing bank does not provide certificate services. Acquirers may choose whether or not to support this option. A flag in the Acquirerís payment gateway certificate indicates support for cardholder transactions, in which the cardholder has no certificate.

Cardholder software and payment gateway software shall use the X.509 Certificate extension, cardCertRequired, a boolean flag set to true, to ensure that certificates are included in transactions as required. Brands which support cardholders without certificates may remove such support by reissuing payment gateway certificates and omitting this extension or setting this boolean flag to false. If a Cardholder has certificates available to them, the software should only perform signed transactions.

Support for cardholders with certificates is mandatory: Merchants and payment gateways shall fully support cardholder certificates and transactions based upon them.��Continued on next page

��styleref "Map Title"�Certificates�, continued

Merchant certificates�A merchant shall have at least two key pairs (encryption and signature) to participate in SET transactions. A merchant may have additional sets of encryption and signature key pairs because of physical implementation, security concerns, Acquirer policy, or a variety of other reasons. For example, a merchant that operates multiple servers may elect to have a separate set of encryption and signature key pairs for each server. In addition, new key pairs shall be generated periodically.

The number of certificates needed by a merchant is a function of the number of merchantís encryption and signature key pairs, the number of payment gateways that interface with the merchant, and the number of brands accepted by the merchant. There are a variety of issues that impact how many payment gateways a merchant will interface with. In the simplest case, the merchant shall interface with a single payment gateway to process all brands. However, a merchant may have relationships with multiple Acquirers. For example, a single Acquirer may not process all the brands the merchant accepts, or the merchant may do business in multiple national markets (and currencies) and have corresponding Acquirer relationships. In addition, Acquirers may choose to operate multiple gateways for load balancing.

SET allows the Acquirer to send cardholder payment information back to the merchant, encrypted under the merchantís key. This capability is designated by an indicator in the merchantís certificate. This option is intended to allow merchants to use out-of-band clearing mechanisms.��Continued on next page

��styleref "Map Title"�Certificates�, continued

Payment Gateway certificates�Two key pairs are required at the Payment Gateway:

A signature pair that is used to sign and verify messages provided to the cardholder and merchant; and

An encryption key-exchange key pair that is used to protect payment instructions generated by the cardholder and by the merchant.��

Certificate chain validation�Certificates shall be validated through a hierarchy of trust. Each certificate is linked to the signature certificate of the certificate issuing entity. Certificates are validated by following the trust hierarchy to the Root CA. The path through which the certificates are validated is called the ëcertificate chainí.

The validation of each certificate shall be enforced at all levels of the chain. For example, a cardholder shall validate the merchant, Merchant CA, Brand Geo-political CA, Brand CA, and Root CA certificates. The validation process may stop at a level that has been previously validated. A detailed description of the certificate chain validation processing is provided in ì� REF map_Certificate_Chain_Validation * MERGEFORMAT �Certificate Chain Validation�î on page � PAGEREF map_Certificate_Chain_Validation �78�.��

Summary of certificate types�� REF _Ref369514454 * MERGEFORMAT �Table 1� below lists all certificates needed in SET:��

Certificate Types�Digital Signature�KeyEncryption�Certificate & CRL Signing��Cardholder�X����Merchant�X�X���Payment Gateway�X�X���Cardholder CA�X�X�X��Merchant CA�X�X�X��Payment Gateway CA�X�X�X��Brand Geo-political CA�X��X��Brand CA���X��Root CA���X��Table � SEQ Table * ARABIC �1�: Summary of Certificate Types

�Brand CRL Identifier

Purpose�Each brand is responsible for managing CRLs within its own domain. The SET architecture introduces the concept of a BrandCRLIdentifier (BCI). A BCI is digitally signed by the brand and used to identify the SET CRLs that the cardholder, merchant, Payment Gateway, and CA systems need to screen against whenever validating certificates as part of signature verifications. Refer to ì� REF P2 * MERGEFORMAT �Certificate Management�î (starting on page � PAGEREF P2 �113�) for additional details about BCI.��

Contents�Each instance of a BCI identifies the brand and the brandís CA subject names that have CRLs that need to be processed when validating signatures in SET messages. Each BCI has a sequence number and validity period.��

BCI entity types�� REF _Ref369514570 * MERGEFORMAT �Table 2� below lists the types of SET CA entities that may exist on a BCI and the motivation for including each entity. ��

Entity�Reason for BCI��Root CA�Unscheduled replacement or termination of the Root or brand CA certificates��Any brand CA�Unscheduled replacement or termination of a CA certificate issued by the brand CA��Brand Geo-political CA�Unscheduled replacement or termination of CCA, MCA, or PCA entities��Payment Gateway CA�Unscheduled replacement or termination of Payment Gateway certificates��Table � SEQ Table * ARABIC �2�: BCI Entity Types

�Chapter 3�Technical Requirements

Overview

Introduction�Chapter 3 summarizes other design considerations that affect the overall technical requirements for SET.��

Organization�Chapter 3 includes the following sections:��

Section�Title�Contents�Page��1�� REF P1C3S1 * MERGEFORMAT �Security��Summarizes the primary security considerations for SET.�� PAGEREF P1C3S1 �39���2�� REF P1C3S2 * MERGEFORMAT �Adaptability��Summarizes the implications on the design to support different environments with respect to cardholder certificates.�� PAGEREF P1C3S2 �44���3�� REF P1C3S3 * MERGEFORMAT �Interoperability��Summarizes the general message formats and encapsulation methods.�� PAGEREF P1C3S3 �45���

�Section 1�Security

Overview

Introduction�The intent of SET is to address certain security issues related to three-party payment mechanisms conducted over the Internet.

Public-key signature mechanisms are critically dependent upon the security of the corresponding private keys. SET requires public/private key pairs for the Payment Gateways and merchants, and supports them as a recommended option for cardholders. Developers shall pay particular attention to the methods used to store the private keys of these participants. The private keys shall be protected through encryption or perhaps using tamper-resistant mechanisms. Payment gateways shall use tamper-resistant hardware cryptographic modules to perform cryptographic functions and for generation and storage of secret keys. Merchant servers and cardholder applications should also employ hardware cryptographic modules to perform cryptographic functions and to generate and store secret keys.

SET operates with public keys that are distributed via certificates signed by well-known Certificate Authorities (CAs). Cardholders, merchants, and payment gateways shall authenticate the Certificate Authorities and root keys recognized by their software using mechanisms provided in SET.

SET offers an option that permits the Payment Gateway to provide cardholder account information to the merchant, encrypted under the merchantís public key. When this option is used, care shall be taken to ensure the security of the payment information as it resides on the merchantís systems. The merchant software shall store payment information in encrypted form. Merchants should also store payment information off-line, or behind a firewall or similar mechanism.��

Trusted cache�Certificates, CRLs, and BCIs will be accessed frequently when processing SET messages. Thus, the processing of successive SET messages may be optimized by maintaining a local trusted cache of frequently accessed certificates, CRLs and BCIs. Cardholder and merchant systems supporting SET shall enforce a policy to protect its trusted cache containing certificates, CRLs, and BCIs and their corresponding thumbprints from unauthorized access or modification.��

�Confidentiality

Definition�Data confidentiality is the protection of sensitive and personal information from unintentional and intentional attacks and disclosure. Securing such data requires data encryption and associated key management in uncontrolled environments, such as unsecured networks.

SET uses both asymmetric and symmetric encryption algorithms in conjunction with a digital envelope to provide data confidentiality. Refer to the SET Business Description (Book 1) for an overview of this technique.��

Payment data�SET is responsible for the confidentiality of payment data that it needs to manage. Where non-payment data confidentiality is needed, it is provided in the protocol messages by including a reference to the actual data rather than the data itself. For example, SET does not exchange the Order Description, but includes a hash of the Order description in the Purchase Request (PReq).��

Other data�Although the confidentiality of the non-payment data is outside the scope of SET, system developers are encouraged to protect this data.��

�Authentication

Definition�Authentication provides assurance that the data received was in fact sent by the party who claims to have sent it. Thus, the receiver can authenticate the sender by verifying the received data. This is accomplished using digital signatures and public key certificates issued by a CA.��

Entity authentication�Digital signatures require a trusted third party to vouch for the authenticity of the public key used to verify the signature. The process dictates that a trusted third party, a Certificate Authority (CA), provides an electronic certificate that vouches for the fact that a public key is ìownedî by a certain entity. This electronic certificate (itself digitally signed by the CA) is stored by the entity in their computer. The recipientís system uses the certificate to verify the senderís public key. At that point the recipient is sure that:

The original data was not altered (data integrity);

The message could only have been signed by the holder of that private key (entity authentication); and

A trusted third party has vouched for the fact that the signer is in fact the holder of that key pair.

Therefore, the uniqueness of the digital signature and the underlying hash value coupled with the strength of the public key certificate provides an acceptable level of assurance to authenticate the sender and to verify that the sender was the originator of the signed data.��

Cardholder authentication�Merchants and Acquirers shall verify that a cardholder is using a valid account number. Mail and telephone order merchants often go to great lengths to verify the identity of cardholders. Also, unauthorized individuals who have stolen valid payment card account numbers and expiration dates may try to initiate electronic commerce transactions. A mechanism that links a user to a specific account number will reduce the incidence of fraud and therefore the overall cost of payment processing.

The cardholder certificate issued by the CCA is evidence that the cardholderís public key has been tied to the account number.��Continued on next page

��styleref "Map Title"�Authentication�, continued

Merchant authentication�A merchant receives verification of an agreement with the Acquirer through the issuance of a certificate. Acquirers shall authenticate the merchantís certificate request and, if appropriate, issue a certificate through its MCA. This certificate provides assurance that the merchant holds a valid agreement with an Acquirer. In essence, this is an ìelectronic decal,î which is equivalent to the brand decal in the merchantís window.

Cardholders and Payment Gateways shall authenticate merchants by verifying the signatures on the merchantís certificate and by validating the certificateís chain.��

Payment Gateway authentication�Payment Gateway certificates are issued by a payment card brandís PCA. Payment card brands shall authenticate the acquirerís certificate request before issuing certificates. These certificates provide assurance that a payment gateway has been authorized by the Brand, Acquirer, or Brand Geo-political Certificate Authority.

Merchants shall authenticate payment gateways by verifying the signatures on the payment gatewayís certificate and by validating the certificateís chain.

Since the cardholder uses the Payment Gatewayís public key for encrypting the symmetric key used to encrypt the payment instruction, the cardholder system needs the ability to authenticate the Payment Gateway. The merchant provides the cardholder with the Payment Gatewayís encryption certificate. The cardholder system shall validate this certificate and thereby be assured that the Payment Gateway is legitimate and that the payment instruction is kept confidential.��

�Integrity

Definition�Data integrity is the assurance that the data received is in fact the data sent. This is accomplished by an integrity value that is generated using the transmitted data. The data and the integrity value are transmitted from the sender to the receiver. The receiver verifies that the data has not been altered during transmission by validating the integrity value on the data.��

Hash functions�Data integrity is supported by using a hash function. A hash function is applied to the appropriate data to produce a statistically unique integrity value called the hash value. The hash functions by themselves do not guarantee absolute data integrity. To provide this guarantee, hash functions need to be combined with a secret quantity or key.

Hash functions are different from symmetric ciphers and have the following properties:

The hash function is a public algorithm.

The hash function is one-way, that is, given the hash value, it is not possible to recreate the original data.

The hash value is computed in such a manner that it is not feasible to identify other data that will hash to the same value.��

Digital signature�A digital signature is defined as data appended to, or a cryptographic transformation of, a data unit that allows a recipient of the data unit to prove the source and integrity of the data unit and protect against forgery, for example, by the recipient.

In SETís architecture, a digital signature is a hash value encrypted using the private key of the sender. The hash value provides integrity of the data within the message; if the payment data is modified, the hash value will be different, and that difference can be detected when the receiver re-computes the hash. The hash is encrypted to ensure that a third party cannot change the hash, since encryption of the new hash value would not be possible without the private encryption key.��

�Section 2�Adaptability

Variations

Purpose�This section illustrates how SETís architecture has been designed to be adaptable to different business models and operational environments, such as support for cardholders without certificates. Refer to Appendices � REF AppL_Fields * MERGEFORMAT �D�, � REF AppL_Field_Support * MERGEFORMAT �E�, and � REF AppL_Impl_Variations * MERGEFORMAT �S� for more information about this topic.��

SET certificates�The design of SET uses X.509 version 3 certificates to support public keys for signature and encryption. These certificates include a public key together with the authentication of that key.��

Use of cardholder certificates�The cardholderís signature certificate provide authentication and integrity of information sent to the merchant and to the Payment Gateway. SET supports environments in which cardholder signature certificates are required, and also environments where cardholder certificates are optional. A payment card brand determines if its application of SET requires signature certificates or not.��

Certificate-required environments�In environments where certificates are required, all messages that require authentication and integrity from the cardholder shall be signed with a signature authenticated by the cardholder certificate. There are protocol initiation requests that do not include such signatures, since no significant protocol failures would result from their abuse. All other messages are signed, and the recipients of these messages are assured receipt of the corresponding certificates by the protocol.��

Non-certificate support�When a cardholder does not have a signature certificate, no digital signature is generated. In place of the digital signature, the cardholder generates the hash of the data and inserts the hash into the digital envelope to ensure the integrity of its contents.��

�Section 3�Interoperability

General Message Formats

Overview�SET messages shall be formatted using non-proprietary techniques, permitting communication over a variety of real-time and non-real-time mechanisms. Wherever possible, standards are employed to enable the protocol to be easily implemented and to ensure that interoperability among implementations is possible. Cryptographic treatments are constrained to ensure that only as much cryptography is employed as is required by the security needs of the payment card transaction. To promote interoperability and the ability to upgrade, SET uses the Public Key Cryptography Standards (PKCS) for representing the cryptographic parameters and message encapsulation.

SET messages are defined using the ISO/IEC and ITU-T Abstract Syntax Notation (ASN.1) standard and shall be encoded using the Distinguished Encoding Rules (DER). This permits unambiguous encoding through a well-understood and widely-accepted standard.��

SET message transport�The SET specification does not define how a SET message is transported between entities. SET messages may be transported using any mechanism that the sender and receiver agree to. It is expected that transport standards will be developed to address the issue of interoperable SET applications.��

SET environments�It is envisioned that SET applications will operate in one of two environments:

Interactive - in this environment, the entities communicate in ìreal-timeî with small time delays between the exchange of messages (such as the World Wide Web); and

Non-interactive - in this environment, the entities communicate in non ìreal-timeî with large time delays between the exchange of messages (such as E-Mail).��

SET Initiation Process�In an interactive environment, it is expected that a ìSET Initiation Processî takes place that triggers the SET protocol. This process will allow the Cardholder and Merchant to exchange certain information required for SET. Such information includes (but is not limited to) the brand the cardholder has selected, the order description, and the purchase amount. It is expected that standards will be developed to address how this information is exchanged and how the SET protocol is initiated.��Continued on next page

��styleref "Map Title"�General Message Formats�, continued

ASN.1/DER encoded messages�The ASN.1 provides a clear, unambiguous definition of the content of messages; DER provides an encoding that is both precise and ensures a single format of the encoded data, which is critical to be able to support operations involving hashes and signatures.

The ASN.1 notation includes a collection of intrinsic types that are used to define SETís data fields and messages but depend upon additional restrictions and constraints. These shall be checked by the application software. For example, IA5String is used as the ASN.1 intrinsic type to define several data fields that contain character string data (for example, MerOrderNum). The allowable character set supported by the IA5String type is sometimes referred to as the ASCII character set. In addition, size constraints on the fields are imposed (for example, MerOrderNum may not exceeded 25 bytes) and shall be checked by all SET software.

Commercial ASN.1 code generators are available that will enable software developers to generate and receive these messages with only modest programming effort beyond providing the ASN.1 specification itself to the compiler. See Appendix � REF AppL_Standards * MERGEFORMAT �A�: � REF Appx_Standards * MERGEFORMAT �External Standards�, for information on specific versions of ASN.1 and DER.��

Thumbprints�In order to support the security requirements of SET, public key certificates and CRLs shall be carried in the protocol. Since these data structures are large, a thumbprint mechanism is provided to reduce the required traffic associated with certificates, CRLs and BCIs.

A thumbprint is a hash of the data portion of a certificate, CRL, or BCI. More specifically, it is the SHA-1 hash of the data which is signed in one of the above signed entities. If an entity of SET would normally need a certificate or CRL from another entity with which it is communicating, it maysend the remote entity the set of thumbprints corresponding to the certificates, CRLs, and BCIs that it possesses. Software shall only send thumbprints that it expects to be related to the transaction. For example, merchant software shall not send the thumbprints for other cardholders or for other brands. The responding entity should omit from its response message any certificates and CRLs for which it has received thumbprints. Since the thumbprints are very small compared to the certificates and CRLs that they represent, much overhead is avoided.��

�MessageWrapper

Purpose�The MessageWrapper is the top level ASN.1/DER data structure in the SET protocol. It provides the information presented to the receiver of a message at the very start of message processing, without involving any cryptography. It identifies both the type of message and its unique identifiers, sufficient data to base initial decisions to support duplicate detection, etc. (The notation used in the table below is presented on page � PAGEREF map_Notation �59�.)��

Field Name�Description��Message-Wrapper�{MessageHeader, Message, [MWExtensions]}��MessageHeader�{Version, Revision, Date, [MessageIDs], [RRPID], SWIdent}��Version�Version of SET message.��Revision�Revision of SET message.��Date�Date/time message generated.��MessageIDs�{[LID�C], [LID�M], [XID]}��RRPID�Request/response pair ID for this cycle.��SWIdent�Identification of the software (vendor and version) initiating the request. This is string data.��Message

�<�PInitReq, PInitRes,�PReq, PRes,�InqReq, InqRes,�AuthReq, AuthRes,�AuthRevReq, AuthRevRes,�CapReq, CapRes,�CapRevReq, CapRevRes,�CredReq, CredRes,�CredRevReq, CredRevRes,�PCertReq, PCertRes, �BatchAdminReq, BatchAdminRes,�CardCInitReq, CardCInitRes,�Me�AqCInitReq, Me�AqCInitRes,�RegFormReq, RegFormRes,�CertReq, CertRes,�CertInqReq, CertInqRes,�Error>��Continued on next page

��styleref "Map Title"�MessageWrapper�, continued

�styleref "Block Label"�Purpose� (continued)���

Field Name�Description��LID�C�Local ID; convenience label generated by and for Cardholder system.��LID�M�Local ID; convenience label generated by and for Merchant system.��XID�Globally unique ID generated by Merchant (or Cardholder, if there is no PInitRes).��MWExtensions�SET Message extensions. An extension would be appropriate in the message wrapper under either of two conditions:

The data in the extension is general purpose information about SET messages; or

The contents of the message are encrypted and the extension contains non-financial data that does not require confidentiality.

Note: The message wrapper is not encrypted so this extension shall not contain confidential information.��

Notes�All SET-related processing begins with the MessageWrapper. Every SET message contains a cleartext MessageWrapper, which shall be decoded before message processing. The TransIDs and RRPID fields have been placed here to permit early duplicate detection; these fields are repeated within the message, so that data can be integrity protected within the body of the message.

At the time the MessageWrapper is decoded, the Message component may not be processed, but its type can be determined from the DER type field of Message. After the MessageWrapper processing is performed, the Message is decrypted and/or its signature verified as is appropriate, then the contents is decoded to yield the information which is processed individually for each message type.��

�Backwards Compatibility

Application requirements�In order for SET to be successful, new versions of SET must be able to interoperate with prior versions. In general, software applications shall interoperate with the current revision of SET and the immediate prior version. That is, an application that supports version 2 of SET (when it is published) shall be able to send and receive version 1 messages. A future version of SET may require compatibility with more than one prior version.��

Checking the Version�To check the version of the message, the software shall first check MessageHeader.Version and MessageHeader.Revision.��

Old messages�An application that receives a message from a previous version which it can process, shall respond (if appropriate) using messages and formats from the received version.

An application that receives a message with a version number that is lower than it can process (such as a version 1 application receiving a message with a version of 0) shall reject the message by responding with an error message containing an ErrorCode of versionTooOld.��

Software upgrade prompts�An application that receives an ErrorCode of versionTooOld should display a message with information about how to upgrade to the latest version of the software. (Cardholder software vendors in particular may want to consider including such a feature.)��

New messages�An application that receives a message with a version number that is higher than it can process (such as a version 1.0 application receiving a message with a version of 2) shall reject the message with an ErrorCode of versionTooNew.

An application that receives an Error message with an ErrorCode of versionTooNew should try sending the message with a lower version message if that option is available.��

�Extension Mechanism for SET Messages

Explanation�The scope of this version of SET was intentionally limited to the minimum functionality necessary to support cardholders and merchants doing business on the Internet. Consequently, some business functions are not included in the definition of SET payment messages. Furthermore, it is unlikely that SET could ever be robust enough to cover the business practices of every national market and every acquirer. Therefore, it is necessary to provide a mechanism to extend SET payment messages.

An example of a business function that is not supported by the SET messages is Japanese Payment Options. Issuers in Japan have options for payment that are selected by the consumer at the time of the purchase. Since there is no place in the SET message to carry this information, an extension to the protocol is necessary.��

Mechanism�The mechanism used to extend SET messages parallels the way that X.509 certificates are extended. Specifically, an extensions field is provided which contains a sequence of extension data. The extension data indicates the type of extension and the criticality of the extension. See Appendix � REF AppL_Extn_Mech * MERGEFORMAT �H�: � REF Appx_Extn_Mech �Extension Mechanism for SET Messages� for details.��

�PKCS†#7 Formats

Purpose�To ensure interoperability and the ability to upgrade, the Public-Key Cryptography Standards (PKCS) #7, Cryptographic Message Syntax Standard, is used as the basis for the cryptographic encapsulation methods used in SET messages. Review the PKCS†#7 documentation cited in ì� REF block_related_doc * MERGEFORMAT �Related documentation�î on page � PAGEREF block_related_doc �iii�.��

Benefits�PKCS†#7 formats are used to represent the enveloped data in SET messages. ASN.1 and its encoding rules, a set of international standards, are used throughout the PKCS†#7 specification. By using ASN.1 to define the SET messages, one format is used throughout the entire SET specification.��

PKCS†#7 methods�SET uses the following PKCS†#7 data encapsulation methods:

SignedData, for signed data encapsulation,

EnvelopedData, for encrypted data encapsulation,

EncryptedData, for encrypted data encapsulation with symmetric keys,

DigestedData, for hashed (or linked) data encapsulation.��

Implicit certificates and CRLs�Signed messages contain all certificates and CRLs necessary for the recipient to verify their signatures; the recipient can indicate certificates that it has previously validated and cached using thumbprints in the corresponding request message.

CRLs and signature certificates are implicit in signed message types. Following PKCS†#7, these are contained in the Certificates field of the SignedData type. Furthermore, SET includes key-exchange certificates in SignedData blocks; these are implicit in the protocol. Language in PKCS†#7 expressly allows this usage.

In the cases where certificates or CRLs require authentication of origin or integrity protection but are not encapsulated in EnvelopedData, they are explicitly defined in the message protocol as specified in Book 3: Formal Protocol Definition. In this case, they are transported in recursively-encapsulated PKCS†#7 SignedData types.��Continued on next page

��styleref "Map Title"�PKCS #7 Formats�, continued

SignedData�The SignedData type from PKCS†#7 is shown below to aid in defining the signature process. Multiple occurrences of SignerInfos are permitted within SignedData; however, a SignedData message is signed by no more than two parties in SET. ��

�

Figure � SEQ Figure * ARABIC �4�: SignedData

For further detail�Appendix � REF AppL_Content_Types * MERGEFORMAT �M�: �REF Appx_Content_Types �ContentTypes� provides a table of SET messages (or components of messages) with their content and contentType for SignedData.��Continued on next page

��styleref "Map Title"�PKCS #7 Formats�, continued

Authenticated attributes�The type of content being signed shall be protected indirectly in the signature, by including the PKCS†#9 contentType attribute in the content to be signed. A digest of the data being signed is also included in the PKCS†#9 messageDigest attribute. SET PKCS†#7 SignedData always includes these two authenticated attributes: contentType and messageDigest.

Object identifiers for the contentType attribute are defined to uniquely identify each of the SET ASN.1 types that can appear in SignedData.��

Example�Consider the signature on an ASN.1 type named Stuff. The SHA-1 digest of the DER encoding of this type is computed. An authenticated attributes data structure is computed by placing the object identifier id-set-stuff into contentType attribute and the digest into messageDigest attribute as shown in the following table.����contentType�id-set-stuff�����messageDigest�SHA-1(Stuff)����The SHA-1 digest of this data structure is computed and the result encrypted using the signerís private key; it is this encrypted digest that is placed in the EncryptedDigest field of the SignedData structure.

The object identifier id-set-stuff identifies the content, that is, what piece of data is authenticated.��Continued on next page

��styleref "Map Title"�PKCS #7 Formats�, continued

Enveloped�Data�The EnvelopedData type from PKCS†#7 is shown below to aid in defining the encryption process. Multiple occurrences of RecipientInfos are permitted within PKCS†#7 EnvelopedData; however, only one RecipientInfo is used in SET messages.

���Figure � SEQ Figure * ARABIC �5�: EnvelopedData

For further detail�Appendix � REF AppL_Content_Types * MERGEFORMAT �M�: � REF Appx_Content_Types �ContentTypes� provides a table of SET messages (or components of messages) with their content and contentType for EnvelopedData.��Continued on next page

��styleref "Map Title"�PKCS #7 Formats�, continued

EncryptedData����Figure � SEQ Figure * ARABIC �6�: EncryptedData

DigestedData�The DigestedData construct from PKCS†#7 is shown below to aid in defining the hashing process.

���Figure � SEQ Figure * ARABIC �7�: DigestedData

For further detail�Appendix � REF AppL_Content_Types * MERGEFORMAT �M�: � REF Appx_Content_Types �ContentTypes� provides a table of SET messages (or components of messages) with their content and contentType for digested data.��

�Transaction Validation by non-SET systems

Explanation�The evidence that a cardholder has participated in a SET transaction is provided by the cardholderís digital signature and certificate. However, once the payment gateway has processed the transaction and formatted it for use by the legacy payment systems, this evidence is lost. Consequently, there is no means for the issuer to validate the cardholderís participation in the transaction. However, the issuer can verify a hash of data known only to the cardholder and the issuer.

During the certificate registration process, the cardholder sends a secret value to the CA. This secret value, named cardSecret, is combined with another secret value generated by the CA to create the Secret. By having the cardholder and CA remember the value supplied by the cardholder, a secret exists that can be used by the cardholder to create a hash that only the cardholder can generate and that only the issuer can verify.

The cardholder software shall generate a hash and include it in the payment instructions. The hash is defined as HMAC(XID, CardSecret). Because the hash includes the SET transaction identifier, the value changes for every transaction preventing replay of the hash on future non-SET transactions.��

�Chapter 4�System Concepts

Overview

Introduction�Chapter 4 summarizes the other important system concepts pertinent to understanding SETís architecture.��

Organization�Chapter 4 includes the following sections:��

Section�Title�Contents�Page��1�� REF P1C4S1 * MERGEFORMAT �Notation and Definitions��Summarizes the notation and conventions used throughout the remainder of this Programmerís Guide.�� PAGEREF P1C4S1 �58���2�� REF P1C4S2 * MERGEFORMAT �Cryptography��Highlights the specific cryptographic algorithms and features.�� PAGEREF P1C4S2 �64���3�� REF P1C4S3 * MERGEFORMAT �Other Features��Describes other features of SETís design.�� PAGEREF P1C4S3 �69���4�� REF P1C4S4 * MERGEFORMAT �Processing��Describes the step-by-step processing guidelines for cryptographic functions used by the payment and certificate management protocol.�� PAGEREF P1C4S4 �75���

�Section 1�Notation and Definitions

Overview

Purpose�This section provides a high-level overview of the notation and fundamental cryptographic treatments that are used to describe the payment and certificate processing flows in this Programmerís Guide.��

�Notation

Purpose�The remainder of this book makes use of the abstract notation described below.��

Concept�Notation�Definition��Tuple�{A, B, C}�A grouping of zero or more data elements. These represent documents or messages, terms occasionally used interchangeably with ìtuple.î Tuples are denoted by identifiers: alphanumeric symbols.

This notation means ìthe tuple containing A,†B,†and†C,î which may, themselves, be tuples.��Component�T = {A, B, C}�A tuple may be given a name as shown, in which case T.A, T.B, and T.C refer to the respective components of T.��Ordered concatenation�A | B | C�This notation means that an explicit, ordered concatenation of items A,†B,†and†C is needed.��Optional�[A]�This notation means that item A is optional.���Selection�<A, B, C>�This notation means that exactly one of A,†B,†and†C must appear. This is a selection notation.�Any other nesting of these brackets is permissible.��Optional selection�[<A, B, C>]�This notation means that the selection is optional; that is, that either nothing or exactly one of A,†B,†and†C may appear. ���Multiple instances�{A +}�This notation means a tuple containing �one or more instances of A.���{A *}�This notation means a tuple containing �zero or more instances of A.���{[A] +}�This notation means a tuple containing:

one or more instances of A.

in an ordered array.

where each instance of A is optional (that is, may be null).��Exclusive-or�(�This symbol denotes a bit-wise exclusive-or (XOR) operation.��Table � SEQ Table * ARABIC �3�: Notation

�Cryptographic Treatments

Caveat�The following tables introduce the notations for the hashing, signature, dual signature, encryption, and encapsulation cryptographic treatments on the data elements which are used throughout the remainder of this Programmerís Guide. Review Book 3: Formal Protocol Definition for additional information.��

Hashing�The notation corresponding to the hashing and hashed-based operators used by SET is summarized in the following table.��

Notation�Operator�Description��H(t)�Hash�160-bit SHA-1 hash of tuple t.��HMAC(t, k)�Keyed-hash mechanism�160-bit keyed-hash of tuple t using key k based on HMAC-SHA-1

HMAC(t,k) = H((k (opad) | H((k (ipad) | t))

where:

ipad is the byte 0x36 repeated 64 times;�opad is the byte 0x5C repeated 64 times; and�(is the XOR function.��L(t1, t2)�Linkage�A reference, pointer, or link to t2 is included with t1; equivalent to the tuple {t1, H(t2)}��Continued on next page

��styleref "Map Title"�Cryptographic Treatments�, continued

Signature�The notation corresponding to the signature operators used by SET is summarized in the following table.��

Notation�Operator�Description��S(s, t)�Signed Message�The signature of entity s on tuple t, including the plaintext of t. SETís default signature algorithm is RSA with SHA-1 hash.

Corresponds to PKCS†#7 SignedData.��

Signature Only�The notation corresponding to the dual signature operators used by SET is summarized in the following table.��

Notation�Operator�Description��SO(s, t)�Signature Only�The signature of entity s on tuple t, but not including the plaintext of t. SO corresponds to a PKCS†#7 external signature. SETís default signature algorithm is RSA with SHA-1 digest.��Continued on next page

��styleref "Map Title"�Cryptographic Treatments�, continued

Encryption�The notation corresponding to the encryption operators used by SET is summarized in the following table.��

Notation�Operator�Description��E(r, t)�Asymmetric Encryption�(Digital Envelope)�First, encrypt t with a fresh symmetric key, k, then, insert k in an PKCS #7 envelope for entity r under OAEP; that is, encrypt OAEP(k) using the public key of entity r, taken from the certificate in tuple r. DES is the default symmetric encryption algorithm.

Corresponds to the standard PKCS†#7 EnvelopedData.��EH(r, t)�Integrity Encryption�This is like E except that the PKCS #7 envelope contains OAEP({k,†H(t)}) for a guarantee of integrity when signature is not available. Processing software shall rehash t and check for match against the H(t) in the PKCS #7 envelope.��EX(r, t, p)�Extra Encryption�This is like E except that t and p are the parts of a two-part message; t is the tuple to be linked to p and subjected to ordinary, symmetric encryption, and p is a parameter, or the part to be subject to ìextraî processing. t is linked to p. OAEP({k,†p}) is inserted in the PKCS #7 envelope for entity r. The t slot is called the ordinary slot of EX, and the p slot is called the extra slot of EX.��EXH(r, t, p)�Extra Encryption with Integrity�This is like EX except with OAEP({k, H(t),†p}) in the PKCS #7 envelope and with the requirement that processing software check H(t), as with EH.��EK(k, t)�Symmetric Encryption with a provided key, k�The symmetric encryption of tuple t using secret key k.

Corresponds to an instance of PKCS†#7 EncryptedData.��	Continued on next page

��styleref "Map Title"�Cryptographic Treatments�, continued

Encapsulation�The notation corresponding to the encapsulation operators used by SET is summarized in the following table. These operators combine signature and encryption operators and are used on most messages, facilitating security analysis of this protocol.��

Notation�Operator�Description��Enc(s, r, t)�Simple Encapsulation with Signature�Signed, then encrypted message.

Corresponds to an instance of PKCS†#7 SignedData encapsulated in EnvelopedData. ��EncK(k, s, t)�Simple Encapsulation with Signature and a Provided Key�Signed messages encrypted with a known, secret key.

Corresponds to an instance of PKCS†#7 EncryptedData.��EncX(s, r, t, p)�Extra Encapsulation with Signature�Two-part messages encrypted with the first part of the message in the ordinary (symmetric encryption) slot of E and the second part of the message in the extra (OAEP) slot of E.��EncB(s, r, t, b)�Simple Encapsulation with Signature and Baggage�Signed, encrypted messages with external baggage.��EncBX(s, r, t, b, p)�Extra Encapsulation with Signature and Baggage�Signed, E-encrypted, two-part messages with baggage.������

�Section 2�Cryptography

Cryptographic Features

Asymmetric key algorithms�SET uses asymmetric public-key encryption algorithms for digital signatures and digital envelopes.��

Asymmetric key sizes�The RSA public-key algorithm is used for all public key operations and certificates, with the following key sizes. The following sizes satisfy the export regulations but are subject to change. ��

Entity�Message Signature�Key-Exchange�Certificate Signing�CRL Signing��Cardholder�1024�����Merchant�1024�1024����Payment Gateway�1024�1024����Cardholder CA�1024�1024�1024���Merchant CA�1024�1024�1024���Payment Gateway CA�1024�1024�1024�1024��Brand Geo-political CA���1024�1024��Brand CA���1024�1024��Root CA���2048�2048��Table � SEQ Table * ARABIC �4�: Asymmetric Key Sizes

�Note: These key sizes may change in the future; however, because of import and export restrictions, SET applications shall hard-code these sizes. Application updates will be necessary when these key sizes change.��

Symmetric key algorithms�The Data Encryption Standard (DES) is the default symmetric key algorithm used in SET to protect sensitive financial data (for example, payment instructions).

Commercial Data Masking Facility (CDMF) is another symmetric key algorithm used for protecting Acquirer-to-cardholder messages.��Continued on next page

��styleref "Map Title"�Cryptographic Features�, continued

DES�DES is the default symmetric data encryption algorithm used for protecting the financial information. Originally published in 1977 for use by the United States government to protect valuable and sensitive, but unclassified data, this standard was subsequently adopted by the American National Standards Institute (ANSI) as the Data Encryption Algorithm (DEA).

DES specifies a cryptographic algorithm to encrypt and decrypt 64-bit blocks of data under the control of a unique key. The algorithm is defined in Federal Information Processing Standard (FIPS) 46-2, published by the U.S. National Institute of Standards and Technology (NIST). SET uses the Cipher Block Chaining (CBC) mode of DES, as defined in FIPS 81. The key is 8 bytes long, with each byte having a parity bit in position 0 yielding an effective key length of 56 bits. The standard padding rule shall be used with the DES-CBC mode as described below.��

SET DES-CBCPadding Rule�The SET padding rule for DES-CBC requires that a padding string always be appended to the final plaintext block being encrypted. This final block may be a complete data block, or a partial data block whose length is not an integral multiple of the block length. A padding string is used in SET regardless of whether the final block is a partial or complete data block

The padding string appended to the final data block makes its length an integral multiple of eight octets. If BL represents the length in octets of the final data block, then the padding string consists of 8 - (|| BL || mod 8) octets. Each octet in the padding string has as its value 8 - (|| BL || mod 8).

When the length of the padding string is a single octet, the value of that octet is 01. When the length of the string is two octets, the value of the two octets is 02, and the padding string used is ë0202í. When the length is three, the value is 03, and the padding string is ë030303í, and so on.��Continued on next page

��styleref "Map Title"�Cryptographic Features�, continued

CDMF�CDMF� algorithm is the symmetric algorithm for providing data confidentiality intended primarily for tunneling Acquirer-to-cardholder information through the merchant. CDMF is a scrambling technique that relies upon DES as the underlying cryptographic algorithm, but weakens the overall cryptographic operation by defining a key-transformation method that produces the equivalent of a 40-bit DES key instead of the 56-bit key length required for full strength DES. Since the CDMF algorithm is not as resistant to key exhaustion as DES, CDMF provides a form of data masking rather than data encryption.

The CDMF key transmitted in the SET protocol is the key before being transformed for use in a DES encryption/decryption engine. In other words, a CDMF key is treated just like a normal DES key.��

Hashing algorithm�Secure Hash Algorithm (SHA-1) shall be used for all hashes in this version of SET, including the hashes used in signatures. All references to hash algorithms shall be interpreted as using the SHA-1 hash algorithm defined in FIPS 180-1. The keyed-hash mechanism (HMAC) shall also use SHA-1 instead ofMD5.��

Digital envelope �A digital envelope is a generic cryptographic technique to encrypt data and to send the encryption key along with the data. Generally, a symmetric algorithm is used to encrypt the data, and an asymmetric algorithm is used to encrypt the encryption key.��

OAEP�SET uses the Bellare-Rogaway Optimal Asymmetric Encryption Padding (OAEP) method in conjunction with its cryptographic encapsulation operators. In addition, SET uses the hashed data technique developed by Matyas and Johnson as an enhancement to the basic Bellare-Rogaway construction. Although OAEP is not directly related to the digital enveloping process, SET toolkits and applications shall apply OAEP prior to encrypting the DES key and optional data using the public key of the receiver.��

�Other Cryptographic Implications

Randomness�An area of special consideration for developers of SET toolkits and applications is the implementation of random number generation used for keys and nonces. Although a precise definition of randomness is outside the scope of the SET specification, developers of products need to be cognizant of the importance of this aspect in their implementation. Poor key generation and seeding methods due to using weak random numbers are common downfalls of cryptographic implementations. The reader is encouraged to use the recommendations provided in the reference cited in the preface for sources of randomness and mixing functions (that is, RFC 1750, Randomness Recommendations for Security, D. Eastlake, S. Crocker, J. Schiller, December 1994).

For cryptographic purposes, once a strong seed is collected, it shall either be used one time only or it shall be used exclusively in a cryptographically secure random number generator. Also, each instance of random number generation algorithm shall have its own independent key-generation seed.��

Statistically unique field values�SET defines several field values as ìstatistically uniqueî. This means that statistically, the odds are extremely small that any two SET applications will randomly generate the same value.��

Nonce�SET defines several fields as ìnoncesî, ìsaltsî or ìfreshness challengesî to defeat ìplaybackî attacks. The sending entity shall generate a random value and insert this value into the message. The recipient of the message shall copy this value into the corresponding response message.��

Algorithm independence�Although this version of the SET specification is explicit about the cryptographic algorithms that shall be supported by cardholder, merchant, and payment gateway systems, the protocolís cryptographic encapsulation operators have been designed to be algorithm independent. All ASN.1 algorithm information object sets are coded with the extension marker (Ö) to allow additional algorithm objects to be added to future versions of the specification, while remaining backward compatible with this version of SET. The symmetric algorithms for protecting Acquirer-to-cardholder messages is another example of how SET will be moving towards this long-range objective.��Continued on next page

��styleref "Map Title"�Other Cryptographic Implications�, continued

Hardware tokens�Depending on the policies established by the Acquirer and brand, hardware tokens may also be used by systems supporting SET. A hardware token is defined as a hardware cryptographic module which does not allow disclosure of the private key. It is anticipated that hardware tokens may be integrated with systems that depend on a higher level of trust assurance, such as the Payment Gateway or CA.

Performing cryptographic functions in hardware tokens:

CAs shall use hardware tokens for all private key operations.

Payment Gateways shall support the use of hardware tokens; their use may be mandated by acquirer or brand policy.

Merchants should support the use of hardware tokens; their use may be mandated by acquirer or brand policy.

Cardholders may support the use of hardware tokens.��

�Section 3�Other Features

Idempotency

Definition�When an operation can be executed any number of times, with no harm done, it is said to be idempotent. From SET perspective, idempotency is a property of how a recipient responds to a message.

Any request in SET that does not receive a response shall be resent since it is impossible for the sender to know if the request or response was lost. The re-transmitted message shall be bit-wise identical to the original request message. In general, a duplicate message is not an error condition.��

Rationale�The SET protocol is designed to work in environments where message delivery is not guaranteed. If a SET application does not receive a response in a reasonable period of time (as defined by the application or possibly in response to a user query), it re-sends the message. When the receiving SET application determines that it has previously processed the same message, it retrieves the previous response and sends that previous response again.

When the sender of a message does not receive a response, it is impossible to determine if the request was lost or the response was lost. To further exacerbate this condition, it is quite possible that the original request may have been simply delayed somewhere in the network then eventually processed just prior to the re-transmitted request being received. Therefore the protocol allows the sender to repeat the request with a guarantee that the outcome shall be the same regardless of whether the request was lost or the response was lost.

Not all SET messages require idempotency. The purchase request does require idempotency. On the other hand, the inquiry request, for example, has been designed to be sent at any time so it is not necessary for a merchant to store every inquiry request to determine if a duplicate is received; it simply returns the current status of the transaction in the inquiry response. A summary of the per-message idempotency requirements is provided in Appendix � REF AppL_Messages * MERGEFORMAT �C�: � REF Appx_Messages * MERGEFORMAT �SET Messages�.��Continued on next page

��styleref "Map Title"�Idempotency�, continued

Description�SET products shall guarantee idempotency of the protocol by examining transaction (XID) and request/response pair (RRPID) identifiers. For example, a payment gateway will reject attempts to replay authorization requests from merchants. It will detect these attempts by examining the RRPID of the authorization request and XID of the embedded payment instruction, separately signed (or hashed) and encrypted by the cardholder.��

Exceptions�If a SET application detects that it is being subjected to a malicious flooding or spamming attack involving one or more idempotent SET messages types, it is not necessary to respond to these messages under this situation.��

�Special Field Types

XID�XID is intended as a statistically unique identifier assigned to a payment transaction so that all messages of the transaction can be related to one another. It is a 20-byte string.��

BrandID�BrandID is an important field used in both the payment and certificate management protocol messages. It consists of a ìbrand nameî and an optional ìproduct.î

The ìbrand nameî corresponds to the brand of the payment card.

The ìproductî defines the type of product within the specific brand. When ìproductî is included, it is separated from the ìbrand nameî by a colon (:) as follows: ìbrand[:product]î��

�Root Public Key Distribution

Significance of root CA certificate�The security of the SET system depends ultimately on the authenticity of the certificates used in the system. These certificates are verified by checking a chain of certificates, with the final certificate in the chain being a single system-wide End Entity. Only through trust in the Root certificate will trust in the SET system be maintained.��

Initial distribution of root key�The root public key is initially distributed as a certificate with the SET software. This certificate shall also contain a hash of the next root public key. The initial distribution of the Root certificate shall be self-signed and shall be verified by an out-of-band mechanism. The chaining process for the Root certificates is based on hash values rather than the distinguished name and serial number of the previous Root certificate.

If the next root key/certificate is not the one represented by the hash within the previous certificate, it shall be treated like the initial Root certificate and requires out of band verification.��

Root key update�The root key may be updated implicitly using the SET protocol. This is described in detail in ì� REF map_Root_Cert_Upd * MERGEFORMAT �Root Certificate Update�î on page � PAGEREF map_Root_Cert_Upd �133�.��

�Off-line Certificates

Certificate provision off�line�In the case of catalog orders, such as those envisioned with CD-ROM shopping, abbreviated protocols may be used that omit the initialization phase between the cardholder and merchant. During this phase, the merchant determines which certificates the cardholder already possesses and sends the cardholder any missing certificates. With abbreviated protocols expected in catalog shopping, these certificates shall be delivered off-line (for example, in the CD-ROM catalog).��

�Cert�PE

Definition �Cert�PE is the certificate generated by the Payment Gateway Certificate Authority (PCA) binding the Payment Gateway to the proposed encryption public key provided in a certificate request (CertReq) message. The certThumbs will include the thumbprint corresponding to Cert�PE. Although the Cert�PE does not appear explicitly in any SET message, it is an optional certificate that may be included in the PKCS†#7 SignedData block of the corresponding certificate response (CertRes) message. ��

�Section 4�Processing

Overview

Purpose�This section provides a high-level overview of the step-by-step processing of common cryptographic treatments that are used by the payment and certificate management protocol descriptions in this Programmerís Guide.��

Summary�The following treatments and operators are included:��

Processing Descriptions�Page��� REF map_Send_Message * MERGEFORMAT �Send Message��� PAGEREF map_Send_Message �76���� REF map_Receive_Message * MERGEFORMAT �Receive Message��� PAGEREF map_Receive_Message �77���� REF map_Certificate_Chain_Validation * MERGEFORMAT �Certificate Chain Validation��� PAGEREF map_Certificate_Chain_Validation �78���� REF map_Thumbprints * MERGEFORMAT �Thumbprints��� PAGEREF map_Thumbprints �79���Simple Encapsulation with Signature (Enc)�� PAGEREF map_Simple_Encap_Sig �81���Simple Encapsulation with Signature and a Provided Key (EncK)�� PAGEREF map_Simple_Encap_Sig_Key �82���Extra Encapsulation with Signature (EncX)�� PAGEREF map_Extra_Encap_Sig �83���Simple Encapsulation with Signature and Baggage (EncB)�� PAGEREF map_Simple_Encap_Sig_Baggage �84���Extra Encapsulation with Signature and Baggage (EncBX)�� PAGEREF map_Extra_Encap_Sig_Baggage �85���Asymmetric Encryption (E)�� PAGEREF map_Asymmetric_Encryp �86���Asymmetric Encryption with Integrity (EH)�� PAGEREF map_Asymmetric_Encry_Integrity �87���Extra Asymmetric Encryption (EX)�� PAGEREF map_Extra_Asymmetric_Encryp �88���Extra Asymmetric Encryption with Integrity (EXH)�� PAGEREF map_Extra_Asymmetric_Encryp_Integrity �90���Symmetric Encryption (EK)�� PAGEREF map_Symmetric_Encryp �92���Signature (S)�� PAGEREF map_Signature �93���Signature Only (SO)�� PAGEREF map_Dual_Sig �95���Keyed-Hash (HMAC)�� PAGEREF map_Keyed_Hash �96���Hash (H)�� PAGEREF map_Hash �97���DigestedData (DD)�� PAGEREF map_Digested_Data �98���Linkage (L)�� PAGEREF map_Linkage �99���Optimal Asymmetric Encryption Padding (OAEP)�� PAGEREF map_OAEP �100���

�Send Message

Sending entity�The sending entity shall ensure that the message contents have been properly formatted and encapsulated based on the message type. Additional data such as certificates, CRLs, and BrandCRLIdentifiers shall be included if any portion of the message is being signed by the sending entity.��

Compose message wrapper�SET applications shall implement this procedure, or functionally equivalent procedures, for all messages sent. It represents the standard processing required each time a message is sent. Note that the cryptography will be different based on the type of encryption required and whether the message is signed; this is specified for each message. The encryption and signature procedures are described in the ì� REF block_Crypto_treatments * MERGEFORMAT �Cryptographic Treatments�î (starting on page � PAGEREF block_Crypto_treatments �60�) and in Book 3: Formal Protocol Definition.��

Step�Action���Generate the SET message as appropriate.

Note: Enveloped messages should contain all certificates and CRLs needed by receiving party in the PKCS†7 envelope.���Insert the current version and revision numbers into MessageWrapper (currently 1 and 0 respectively).���Insert Date (including time). Note: Date must be accurate to ensure receiving entity is able to correctly age messages.���Populate MessageIDs from fields in TransIDs in Message. If there are no MessageIDs in Message (for example, certificate messages), then omit this field.���Insert RRPID. If this is a request, the RRPID shall be generated, and saved to compare to the response. If this is a response message, the RRPID shall be copied from the request.���Insert SWIdent. This is a string that identifies the vendor and the version of the vendor software.���Insert Message (as an ASN.1 open type).���DER encode the wrapped message.���Pass the message from step†8 to the transport mechanism. Depending on the transport mechanism, the message may be further wrapped (such as, with a MIME or HTTP header).��

�Receive Message

Receiving entity�The receiving entity shall ensure that the message contents have been properly formatted and encapsulated based on the message type. Additional data such as certificates, CRLs, and BrandCRLIdentifiers shall be extracted from the message to authenticate any digital signatures applied by the sending entity. The receiving entityís system cache should be updated to reflect these new certificates, CRLs, and BrandCRLIdentifiers.��

Step�Action��1�If the transport mechanism wraps a SET message before transmitting it, remove the wrapper as required by the transport mechanism.��2�Validate the format and content of the message wrapper fields: version, revision, date/time, and message type. If any failure:

Return an Error with ErrorCode set to appropriate error.

Stop processing message.��3�Using RRPID , compare and update the systemís log for duplicate message and handle in accordance with brandís operating guidelines.��4�DER decode the message.��5�If the message contains SignedData, then perform the following:

Update the systemís cache with any CRLs received.

For each certificate received, perform the Certificate Chain Validation processing.

Verify the signature of the message.��6�If the message contains encapsulated data, perform inverse encapsulation operation (decryption), according to the type of encapsulation on the contents of the message, including Step†6 above, if the encapsulated data contains SignedData.��7�Extract any BrandCRLIdentifiers included with the message and update systemís cache, check that all CRLs identified on the BCI are in the systemís cache; otherwise abort processing the message.��8�Process the message.��9�Update the system log to reflect the state of this transaction.��

�Certificate Chain Validation

Processing�The validation of the certificate chain requires that each certificate in the path is verified and that each certificate correctly maps to the CA that issued the certificate. The validation procedures shall be enforced for all levels of the chain. For example, a Cardholder application shall validate the Merchant, Merchant CA, Brand CA, and Root CA certificates and related payment card brands. The validation process is comprised of the following components:

X.509 certificate validation

SET certificate validation

Certificate Revocation List (CRL) processing

BrandCRLIdentifier (BCI) processing

In practice, it is assumed that the validation process will stop at a level that has been previously validated. All SET software shall validate certificate dates as part of the certificate chain validation process. SET software shall provide a warning mechanism for expiring certificates to prevent their attempted use after expiration.��

Step�Action���Validate each certificate in the chain according to the rules specified in Section 12.4.3 of X.509 and using the SET chain validation steps specified in Part 2 starting on page � PAGEREF P2C1S3 �124�.���Verify that the certificate extensions KeyUsage, CertificatePolicies, PrivateKeyUsage, and AuthorityKeyIdentifier are being used in accordance with X.509. ���If a new BCI was received:

Validate its signature using the Brand CA CRL signing certificate.

Verify that the BrandName in the BCI matches that in the certificate chain being validated.

Verify that the NotAfter date is less than the present date.

Check the SequenceNum. If itís greater than the SequenceNum in the BCI cache, store the BCI and verify that all CRLs contained on the BCI are held in the CRL cache. Store any CRLs that are on the BCI but are not already in the cache. ���For each new CRL that was received, perform CRL validation as described in Part 2 starting on page � PAGEREF map_CRL_Validation �248�. ���Check each certificate against the Signing CAís CRL as specified on page � PAGEREF block_UseOfCA_CRL �206�.��

�Thumbprints

Thumb generation�Thumbprints are generated as follows:��

�Thumbprints are computed by performing the SHA-1 hash of the following DER encoded ASN.1 structures:

UnsignedCertificate

UnsignedCertificateRevocationList

UnsignedBrandCRLIdentifier

The hash is computed over the tag-length-value of the encoded structure. The Thumbprint is the same hash that is used to sign or verify a certificate or CRL or BCI. ��

Sending entity�Thumbprints are sent by an entity in a SET request message and can always be ignored by the corresponding recipient. The sending entity is not required to send all thumbprints for all certificates, CRLs and BrandCRLIdentifiers currently existing in its cache, but only those that are pertinent to a particular request/response message pair. For example, merchant software will not need to send the thumbprints for other cardholders or for other brands. The thumbprints may be listed in any order.��

Step�Action��1�Initialize the buffer for storing thumbprints.��2�Append the thumbprint (hash) corresponding to:

For each certificate that exists in the sending systemís cache that is pertinent for processing the response message and for validating the certificate chain, append the thumbprint (hash) corresponding to this certificate.

For each CRL that exists in the sending systemís cache which is pertinent for processing the response message and for validating the certificate chain, append the thumbprint (hash) corresponding to this CRL.

For each BrandCRLIdentifier that exists in the sending systemsí cache which is pertinent for processing the response message and for validating the certificate chain, append the thumbprint (hash) corresponding to this BrandCRLIdentifier. ��3�Return result from step†2.��Continued on next page

��styleref "Map Title"�Thumbprints�, continued

Receiving entity�The recipient shall ensure that the message originator possesses all certificates, CRLs, and the BrandCRLIdentifier needed to complete the processing of the message. The recipient may choose to ignore the thumbprints and send this information to the requester.��

Step�Action��1�Initialize the buffer for storing thumbprints.��2�For each:

certificate that is pertinent for processing the response message or for validating the certificate chain, check if the certificateís thumbprint (hash) matches one of the thumbprints received in the request message. If the thumbprint matches, certificate exists in remote systemís cache and need not be sent with the response message. If the thumbprint does not match or the list is empty, then include the certificate in the response message.

CRL that is pertinent for processing the response message or for validating the certificate chain, check if the CRLís thumbprint (hash) matches one of the thumbprints received in the request message. If the thumbprint matches, CRL exists in remote systemís cache and need not be sent with the response message. If the thumbprint does not match or the list is empty, then include the CRL in the response message.

BrandCRLIdentifier that is pertinent for processing the response message or for validating the certificate chain, check if the CRLís thumbprint (hash) matches one of the thumbprints received in the request message. If the thumbprint matches, CRL exists in remote systemís cache and need not be sent with the response message. If the thumbprint does not match or the list is empty, then include the CRL in the response message.��3�Return results from step†2 with list of certificates, CRLs and BrandCRLIdentifiers to be transferred with response message.��

�Simple Encapsulation with Signature

Enc�The simple encapsulation with signature operator, Enc(s, r, t), models signed then encrypted messages. It corresponds to an instance of PKCS†#7 SignedData encapsulated in EnvelopedData.��

Step�Action��1�Using the Signature operator, sign the contents of tuple t using the private key for entity s. ��2�Append the results of step†1 to the tuple t.��3�Using the Asymmetric Encryption operator, encrypt the result from step†2 using asymmetric public key of recipient, r.��4�Return result from step†3.��

�Simple Encapsulation with Signature and Provided Key

EncK�The simple encapsulation with signature and provided key operator, EncK(k, s, t), models signed messages encrypted with a known, shared, secret key provided by the sender of a prior message.��

Step�Action��1�Using the Signature operator, sign the contents of tuple t using the private key for entity s. ��2�Append the results of step†1 to the tuple t.��3�Using the Symmetric Encryption operator, encrypt the result from step†2 using symmetric secret key, k.��4�Return result from step†3.��

�Extra Encapsulation with Signature

EncX�The extra encapsulation with signature, EncX(s, r, t, p), models two-part messages encrypted with the first part of the message in the ordinary slot and the second part of the message in the extra slot.��

Step�Action��1�Append the contents of parameter p to the contents of tuple t.��2�Using the Signature operator, sign the results of step†1 using the private key for entity s. ��3�Append the results of step†1 to the tuple t.��4�Using the Extra Asymmetric Encryption operator, store parameter p in the extra slot of OAEP and encrypt the result from step†3 using the asymmetric public key of recipient, r. ��5�Return result from step†4.��

�Simple Encapsulation with Signature and Baggage

EncB�The simple encapsulation with signature and baggage, EncB(s, r, t, b), models signed, encrypted messages with external baggage.��

Step�Action��1�Compute SHA-1 hash of baggage, b.��2�Link tuple t with baggage b by appending results from step†1 to t.��3�Using the Signature operator, sign the results of step†2 using the private key for entity s. ��4�Append the results of step†3 to the results of step†2.��5�Using the Asymmetric Encryption operator, encrypt the result from step†4 using asymmetric public key of recipient, r.��6�Append the baggage b to the results of step†5.��7�Return result from step†6.��

�Extra Encapsulation with Signature and Baggage

EncBX�The extra encapsulation with signature and baggage, EncBX(s, r, t, b, p), models signed, ìextraî encrypted, two-part messages with external baggage.��

Step�Action��1�Compute SHA-1 hash of baggage, b.��2�Link tuple t with baggage b by appending results from step†1 to t.��3�Append the contents of parameter p to the results of step†2.��4�Using the Signature operator, sign the results of step†3 using the private key for entity s. ��5�Append the results of step†4 to the results of step†2.��6�Using the Extra Asymmetric Encryption operator, store parameter p in the extra slot of OAEP and encrypt the result from step†5 using the asymmetric public key of recipient, r.��7�Append the baggage b to the results of step†6.��8�Return result from step†7.��

�Asymmetric Encryption

E�The asymmetric encryption operator, E(r, t), corresponds to PKCS†#7 EnvelopedData of tuple, t, encrypted for entity r. This operator consists of applying fast, symmetric, bulk encryption to message plaintext and then encrypting the secret key for bulk encryption with the recipientís public key. SETís default symmetric algorithm is DES; RSA is the default asymmetric algorithm; SHA-1 is the default hashing algorithm. OAEP shall be used to obfuscate the contents of the PKCS #7 envelope.��

Step�Action��1�Initialize and load data fields depending on the message type.��2�Transform data fields ìto be ordinarily encryptedî to their DER equivalent format.��3�Generate a fresh symmetric DES key. Note that this key may be reused no more than 100 times. ��4�Encrypt the result from step†2 using symmetric DES key from step†3; DES-CBC mode shall be used following the standard padding rule as described on page � PAGEREF blockPaddingRule �65�. ��5�Initialize encrypted content buffer with data content type, DES algorithm identifier, and append result from step†4.��6�Initialize envelope buffer depending upon the recipient (128 bytes).��7�Initialize the ìto be extra encryptedî OAEP buffer with symmetric DES key from step†3.��8�Apply OAEP processing to envelope buffer.��9�Encrypt the result from step†8 using asymmetric public key of entity r.��10�Initialize recipient information buffer with RSA algorithm identifier and append result from step†9.��11�Initialize PKCS†#7 EnvelopedData buffer and append result from step†10 and the result from step†5.��12�Return result from step†11.��

�Asymmetric Encryption with Integrity

EH�The integrity encryption operator, EH(r, t), is similar to E except that the PKCS #7 envelope includes a hash of the tuple t. It consists of applying fast, symmetric, bulk encryption to message plaintext and then encrypting the secret key for bulk encryption and hash with the recipientís public key. Processing software shall re-hash tuple t and check for match against the corresponding hash in the PKCS #7 envelope. SETís default symmetric algorithm is DES; RSA is the default asymmetric algorithm. OAEP shall be used to obfuscate the contents of the RSA envelope.��

Step�Action��1�Initialize and load data fields depending on the message type.��2�Transform data fields ìto be ordinarily encryptedî to their DER equivalent format.��3�Compute SHA-1 hash of result from step†2.��4�Generate a fresh symmetric DES key.��5�Encrypt the result from step†2 using symmetric DES key from step†4; DES-CBC mode shall be used following the standard padding rule as described on page � PAGEREF blockPaddingRule �65�. ��6�Initialize encrypted content buffer with data content type, DES algorithm identifier, and append result from step†5.��7�Initialize envelope buffer depending upon the recipient (128 bytes).��8�Initialize the ìto be extra encryptedî OAEP buffer with symmetric DES key from step†4 and the hash computed from step†3.��9�Apply OAEP processing to envelope buffer.��10�Encrypt the result from step†9 using asymmetric public key of entity r.��11�Initialize recipient information buffer with RSA algorithm identifier and append result from step†10.��12�Initialize PKCS†#7 buffer and append result from step†11 and the result from step†6.��13�Return result from step†12.��

�Extra Asymmetric Encryption

EX�The ìextraî asymmetric encryption operator, EX(r, t, p), consists of applying fast, symmetric, bulk encryption to the plaintext in tuple t, and a separate ìextraî process to the other plaintext in parameter p. In SETís implementation of this operator, p is put inside the PKCS #7 envelope and the tuple t is linked to p prior to bulk encrypting its contents. A fresh 20-byte nonce (EXNonce) is also included to foil dictionary attacks on p. The secret key for bulk encryption and parameter p is encrypted with the recipientís public key. SETís default symmetric algorithm is DES; RSA is the default asymmetric algorithm. OAEP shall be used to obfuscate the contents of the RSA envelope.��

Step�Action��1�Initialize and load data fields depending on the message type.��2�Transform data fields ìto be ordinarily encryptedî to their DER equivalent format.��3�Initialize buffer and copy parameter p for ìextra processingî.��4�Generate a fresh nonce and append to result from step†3.��5�Compute SHA-1 hash of result from step†4.��6�Link tuple t with parameter p by appending results from step†5 to results of step†2.��7�Generate a fresh symmetric DES key.��8�Encrypt the result from step†6 using symmetric DES key from step†7; DES-CBC mode shall be used following the standard padding rule as described on page � PAGEREF blockPaddingRule �65�. ��9�Initialize encrypted content buffer with data content type, DES algorithm identifier, and append result from step†8.��10�Initialize envelope buffer depending upon the recipient (128 bytes).��11�Initialize the ìto be extra encryptedî OAEP buffer with symmetric DES key from step†7 and the buffer with parameter p and nonce initialized in step†4.��12�Apply OAEP processing to envelope buffer.��Continued on next page

��styleref "Map Title"�Extra Asymmetric Encryption�, continued

�styleref "Block Label"�EX� (continued)���

Step�Action��13�Encrypt the result from step†12 using asymmetric public key of entity r.��14�Initialize recipient information buffer with RSA algorithm identifier and append result from step†13.��15�Initialize PKCS†#7 buffer and append result from step†14 and the result from step†9.��16�Return result from step†15.��

�Extra Asymmetric Encryption with Integrity

EXH�The ìextraî asymmetric encryption with integrity operator, EXH(r, t, p), is similar to EX except that the PKCS #7 envelope also includes a hash of the tuple t. It consists of applying fast, symmetric, bulk encryption to the plaintext in tuple t, and a separate ìextraî process to the other plaintext in parameter p. In SETís implementation of this operator, p is put inside the PKCS #7 envelope and the tuple t is linked to p prior to bulk encrypting its contents. Similar to EX, a fresh 20-byte nonce (EXNonce) is also included to foil dictionary attacks on p. The secret key for bulk encryption, hash of tuple t and parameter p is encrypted with the recipientís public key. Processing software shall re-hash tuple t and check for match against the corresponding hash in the PKCS #7 envelope. SETís default symmetric algorithm is DES; RSA is the default asymmetric algorithm. OAEP shall be used to obfuscate the contents of the PKCS #7 envelope.��

Step�Action��1�Initialize and load data fields depending on the message type.��2�Transform data fields ìto be ordinarily encryptedî to their DER equivalent format.��3�Compute SHA-1 hash of result from step†2.��4�Initialize buffer and copy parameter p for ìextra processingî.��5�Generate a fresh nonce and append to result from step†4.��6�Compute SHA-1 hash of result from step†5.��7�Link tuple t with parameter p by appending results from step†6 to results of step†2.��8�Generate a fresh symmetric DES key.��9�Encrypt the result from step†7 using symmetric DES key from step†8; DES-CBC mode shall be used following the standard padding rule as described on page � PAGEREF blockPaddingRule �65�. ��10�Initialize encrypted content buffer with data content type, DES algorithm identifier, and append result from step†9.��11�Initialize envelope buffer depending upon the recipient (128 bytes).��12�Initialize the ìto be extra encryptedî OAEP buffer with symmetric DES key from step†8, the hash computed from step†3, and the buffer with parameter p and nonce initialized in step†5.��Continued on next page

��styleref "Map Title"�Extra Asymmetric Encryption with Integrity�, continued

�styleref "Block Label"�EXH� (continued)���

Step�Action��13�Apply OAEP processing to envelope buffer.��14�Encrypt the result from step†13 using asymmetric public key of entity r.��15�Initialize recipient information buffer with RSA algorithm identifier and append result from step†14.��16�Initialize PKCS #7 buffer and append result from step†15 and the result from step†10.��17�Return result from step†16.��

�Symmetric Encryption

EK�The symmetric encryption operator, EK(k, t), encrypts the plaintext in tuple t with a provided key, k. Either the DES or CDMF algorithm may be used.��

Step�Action��1�Initialize and load data fields depending on the message type.��2�Transform data fields ìto be ordinarily encryptedî to their DER equivalent format.��3�Encrypt the result from step†2 using symmetric key, k, using either DES or CDMF depending on the algorithms supported by the message recipient. For DES, the DES-CBC mode shall be used following the standard padding rule as described on page � PAGEREF blockPaddingRule �65�.��4�Initialize encrypted content buffer with data content type, DES (or CDMF) algorithm identifier, and append result from step†3.��5�Return result from step†4.��

�Signature

S�The signature operator, S(s, t), corresponds to PKCS #7 SignedData of tuple, t, signed by entity s. SETís default signature algorithm is RSA with SHA-1 hash. All SET toolkits and applications shall adhere to the ìsign before encryptî policy.

SET PKCS #7 SignedData digital signature operations are always performed on values that are the DER representations of ASN.1 types. SignedData signature operations are never performed on arbitrary octet strings, such as ASCII text files or random strings with no internal structure, so the data content type is never used. In such situations, PKCS #7 requires that at least two authenticated attributes be included in the content to be signed. The parameterized types, S{} and SO{}, both represent SignedData in SET, and both require authenticated attributes.

Two authenticated attributes, contentType and messageDigest, are always included in the content to be signed in SET. For SignedData, a message digest results from the application of the PKCS #7 message-digesting process to some SET ASN.1 type, the content to be signed. For SET SignedData, the content to be signed is always the complete DER representation, including the tag and length octets, of two authenticated attributes tightly coupled with the content component of ContentInfo.

The initial input to the message-digesting process is the DER representation of the content component of the ContentInfo sequence. ContentInfo binds a contentType component object identifier to the type in its content component. In SET, each SignedData content type is uniquely named by an object identifier. Since this value is not protected directly against a substitution attack, it is also included in the authenticateAttributes. The contentType attribute shall specify an object identifier that matches the value in the contentType component of the ContentInfo sequence. The messageDigest attribute contains the value of the digested content component of ContentInfo.

The definition of the SignerInfos sequence in PKCS #7 allows any number of signers to be included in the collection, providing one SignerInfo per signer. In a degenerate case, PKCS #7 allows SignedData to be used with no signers. SET PKCS #7 SignedData requires one signer for all messages except CertReq and CertInqReq, which requires two signers when used for certificate renewal. It is constrained to permit only one or two signers, so that the general processing requirements of PKCS #7 are simplified in SET.

In the SignerInfo component of SignerInfos, both the authenticateAttributes and the unauthenticateAttributes components are specified as optional. Under DER, the ASN.1 Distinguished Encoding Rules used by SET, when optional sequence components are absent they do not appear in an encoding of a value of that type. In SET, the unauthenticateAttributes component of the SignerInfo sequence is always absent, and never appears in an encoding of SignedData. The authenticateAttributes component is always present, and shall be included in the message-digesting process.��Continued on next page

��styleref "Map Title"�Signature�, continued

Composing SignedData���

Step�Action��1�Initialize a SignedData type with the version, algorithm identifier and content type to be signed.��2�Encode the type to be signed to obtain its DER equivalent format.��3�Use the result of step†2 to initialize the content component of ContentInfo.��4�Initialize a SignerInfo type with the version, digest algorithm and digest encryption algorithm.��5�Compute the message digest, using SHA-1, of the result of step†3.��6�Initialize an authenticatedAttributes structure and populate the structure with two attributes: contentType and messageDigest. Set the type components of these attributes with the identifiers of the two attributes.��7�Initialize the values component of the first attribute with the content type to be signed, and the second attribute with the message digest computed in step†5.��8�Encode the authenticated attributes, and encrypt this result using the senderís private key, placing the signature in EncryptedDigest.��9�Select the pertinent X.509 certificates and CRLs needed to verify the signature and included them in the SignedData.��10�If the message type requires two signatures, repeat steps†4 through 9.��

�Signature Only

SO�The dual signature only operator, SO(s, t), is an optimization of separately signing tuple t, signed by entity s. SETís default signature algorithm is RSA with SHA-1 hash. All SET toolkits and applications shall adhere to the ìsign before encryptî policy.

The processing steps for the SO operator differ slightly from those of the S operator. With SO, the content component of ContentInfo is absent, and does not appear in an encoding of a value of that type. Perform all of the steps of S except step � REF step_S_content * MERGEFORMAT �3�, which is skipped.��

�Keyed-Hash

HMAC�The keyed-hash operator, HMAC(t, k), corresponds to the 160-bit HMAC-SHA-1 hash of the tuple, t, using the secret, k. This function shall be used as the blinding function to protect the account number in the cardholderís certificate. The shared secret is known only by the cardholder and their certificate Issuer. HMAC is also used to form transaction stains.��

Step�Action��1�Set ipad equal to buffer containing 64 bytes with 0x36 repeated 64 times.��2�Set opad equal to buffer containing 64 bytes with 0x5c repeated 64 times.��3�Append zeros to the end of k to create a 64 byte buffer (for example, if k is of length 20 bytes, it shall be appended with 44 zero bytes 0x00).��4�Compute bit-wise exclusive-or result of step†3 and ipad.��5�Append the data stream in tuple t to the 64 byte buffer computed from step†4.��6�Compute the SHA-1 hash of result of step†5 via Hash operator.��7�Compute bit-wise exclusive-or result of step†3 and opad.��8�Append the SHA-1 result from step†6 to the 64 byte buffer resulting from step†7.��9�Compute the SHA-1 hash of result of step†8 via Hash operator.��10�Return result from step†9.��

�Hash

H�The hash operator, H(t), corresponds to the 160-bit SHA-1 hash of the tuple, t. This operator corresponds to the SET ASN.1 parameterized type H{}. Though this type is never directly referenced in any SET message, it is used in OAEP processing and included here for completeness. To achieve algorithm independence, SET hash values are packaged in PKCS†#7 DigestedData, along with an identifier that names the algorithm used to create the hash. ��

Step�Action��1�Set B equal to the address of tuple t to be hashed.��2�Set L equal to length of tuple t to be hashed.��3�Initialize a 160-bit buffer for holding SHA-1 hash value.��4�Compute SHA-1 hash of buffer using B and L.��5�Return result from step†4.��

�Digested Data

DD�The DigestedData operator DD(T) corresponds to a 160-bit SHA-1 hash of the tuple embedded in a PKCS DigestedData sequence. SET uses the DD{} parameterized type to specify "detached digests", DigestedData in which the content that is digested is not included in the content component of ContentInfo. Each type of content digested in SET has a name, a unique object identifier. The contentType component of ContentInfo is set to this object identifier value.

The digest component of DigestedData is the result of the message-digesting process. It contains a message digest of the SET type identified by the contentType component of ContentInfo. The message digest is computed using one of the algorithm objects in the DigestAlgorithms information object set. It is computed on the complete DER representation, including the tag and length octets, of the SET ASN.1 type to be digested.

The digestAlgorithm component of DigestedData is set to the values of the two fields of the selected algorithm object. This specifies an object identifier which uniquely names the algorithm used to compute the message digest, and any associated parameters required by the cryptographic algorithm. The digestAlgorithm is used by the recipient to verify the message digest.

In a DER encoding of DD{}, the content component of ContentInfo will not be present. The recipient must obtain the message content from elsewhere to verify the message digest. The verification is accomplished by independently computing a message digest, and comparing it to the value of the digest component of DigestedData.

��

Step�Action��1�Set B equal to the address of tuple t to be hashed.��2�Set L equal to length of tuple t to be hashed.��3�Initialize a 160-bit buffer for holding SHA-1 hash value.��4�Compute SHA-1 hash of buffer using B and L.��5�Insert result of step†4 in digest field of DigestedData.��6�Insert the SHA-1 hash algorithm identifier into digestAlgorithm .��7�Set the version to zero.��

�Linkage

L�The linkage operator, L(t1, t2), corresponds to a sequence of the tuple t1 and a PKCS #7 DigestedData. The DigestedData linkage component contains a message digest of tuple t2, and can be represented by DD(t2). The linkage operator is not symmetric. It does not link t2 to t1.��

Step�Action��1�Build a structure with two fields.��2�Populate the first field with tuple t1.��3�Using tuple t2, populate the second field with the results of DD(t2).��

�Optimal Asymmetric Encryption Padding

Purpose�The purpose of OAEP is to ensure that individual pieces of a message cannot be extracted from an PKCS #7 block. There are cryptoanalytic techniques that make some bits of a message easier to determine than others.

OAEP randomly distributes the bits of an PKCS #7 block making each bit as difficult to extract as all other bits.��

Algorithm description�The E, EH, EX, and EXH encryption primitives combine RSA encryption and Bellare-Rogaway Optimal Asymmetric Encryption Padding (OAEP). SET uses OAEP to provide ìextraî protection of the account information associated with the cardholder, merchant or Acquirer in the digital envelope.

This section provides a brief description on how to implement SETís use of OAEP to support its ìextra encryptionî and ìextra decryptionî operators. The reader is encouraged to supplement this description with the OAEP information provided in Book 3: Formal Protocol Definition.��Continued on next page

��styleref "Map Title"�Optimal Asymmetric Encryption Padding�, continued

Extra encryption�SET ìextra encryptionî involves the following processing steps:��

Step�Action��1�Prepare any ìextraî data as described in the message formats.��2�If EH or EXH encryption is used, compute the SHA-1 hash of the data to be DES-encrypted prior to its encryption.��3�Generate a fresh, random, key for DES-encrypting the ìregularî part of the data.��4�Concatenate the DES key, the SHA-1 hash of the data (HD) prior to being DES encrypted (if used), and any ìextraî data to form the Actual Data Block, ADB.��5�Prepend a single byte containing 0x03 (the Block Type byte, BT) and seven bytes of zeros (the Verification bytes, V), and Block Content byte (BC) to ADB to form the Data Block, DB.

DB = BT | BC | V | ADB��6�Generate a random 16-byte string E�Salt, and compute H1(E�Salt). H1 returns the leading bytes of the SHA-1 hash.��7�Compute A = DB (H1(E�Salt).��8�Let B = E�Salt (H2(A). Concatenate A to B to form PDB. H2 returns the trailing bytes of the SHA-1 hash.��9�Set I to a random value not equal to either 0x00 or 0x80.��10�Encrypt the final block, R, with RSA, by raising it to the power of the public encryption exponent, modulo the RSA modulus. ��Continued on next page

��styleref "Map Title"�Optimal Asymmetric Encryption Padding�, continued

Extra decryption�SET ìextra decryptionî requires the following steps:��

Step�Action��1�Decrypt the received block with RSA, by raising it to the power of the private encryption exponent, modulo the RSA modulus.��2�Verify that the first byte (I) of the resulting block is neither 0x00 nor 0x80.��3�Compute E�Salt = B (H2(A). ��4�Compute DB = A (H1(E�Salt).��5�Verify BT, BC, and V, and obtain ADB.��6�Parse ADB for a DES key, possible hash, and possible extra-encrypted data, depending upon BC.��7�Decrypt the DES data using the retrieved DES key.��8�If BC indicates that a SHA-1 hash (HD) is present, verify the hash against the decrypted DES data.��Continued on next page

��styleref "Map Title"�Optimal Asymmetric Encryption Padding�, continued

Processing�� REF _Ref369514262 * MERGEFORMAT �Figure 8� below illustrates the processing flow for SETís application of OAEP.��

�

Figure � SEQ Figure * ARABIC �8�: OAEP Processing Flow

Continued on next page

��styleref "Map Title"�Optimal Asymmetric Encryption Padding�, continued

Encoding of DB�Only atomic (in the sense of ASN.1) data elements are present in DB. Each element is encoded within DB in the canonical form used by DER encoding, but without tag or length octets. When transferring data from DER-encoded format to DB, add pad characters (0x00) to the end of the data; when transferring from DB to DER-encoded format, strip all pad characters from the end of the data.

To understand the format of a DB field, examine the ASN.1 used to define the field for signature purposes. Determine the matching DER-encoded wire format, and store the field in DB accordingly.��

�SET Error Processing

Introduction�From the perspective of a SET participant, SET flows always occur in pairs. Each message transmitted by a requesting participant is answered by a responding participant. The Error flow (unlike all the other flows) is defined with respect to requesters and responders because it is used when the responder cannot reliably identify an incoming message.

Error indicates that a responder rejects a message because it fails format or content verification tests. The responder sends Error (rather than a negative response code) when the responder cannot trust any of the fields of an incoming message. In general, Error shall be used only to respond to the direct sender of the message, and when it is not possible to clearly isolate the error to an incorrect value of a field. Error is intended to respond to messages which may be interpreted as corrupted or unintelligible.��

���(any message except Error)����Error

���Figure � SEQ Figure * ARABIC �9�: Error Message

Not for business results�The Error message is not used to indicate normal business results such as a declined authorization. Business results are indicated by explicit codes in standard response messages.��

Error categories�Errors in the SET system can result from a number of different sources. SET messages can be parseable but malformed by not adhering to the requirements of the protocol, values can be illegal, or messages can be corrupted, usually as a result of transmission errors.��Continued on next page

��styleref "Map Title"�SET Error Processing�, continued

Duplicate message�Enough information appears in cleartext in the message wrapper that one can detect whether a message is a retransmit or not. The recipientís reaction to a duplicate message is dependent upon the idempotency property of the message type, the number of duplicated messages, the source of the duplicate message, and observing the frequency between successive duplicate messages. If a system suspects that it is being subjected to flooding or spamming attacks, duplicate messages may be ignored.��

Corrupted messages�A corrupted message is one that cannot be parsed. Normally, a potential corrupted message should not be received, because communication transport mechanisms will cause corrupted data to be resent. However, if a corrupted message is received, an appropriate error message shall be returned indicating that a corrupted message was received and providing the request/response pair identifier of the message, if available. It is acceptable to ignore the message completely if not enough data is extracted to be able to respond.��

Malformed messages�If a message can be parsed, but is otherwise illegal due to values that are out of range or options that are inconsistent, an appropriate error message shall be returned to the originator.��

Failed cryptography�If a message is received in which authentication tests fail, an appropriate error message shall be returned. A delayed, generic error message shall be used to avoid disclosing any details about the failure. The software shall log a message when any failed cryptography error is detected.��

Errors to Error messages�An application shall never generate an Error message in response to another Error message.��

When to send Error�Merchant, payment gateway and CA software should send an Error message when encountering a low-level processing error on a SET request message. Any messages that do not appear to be SET messages should be ignored.

Cardholder and merchant software should send an Error message when encountering a low-level processing error on a SET response message. The Error message should be sent to a diagnostic log port if one has been defined for the system that sent the response. Applications should avoid sending Error messages on the same port as request messages; however, if no diagnostic log port is available, the application may send one Error message per day on the request port.

The software may limit the number of error messages that are sent to mitigate the effects of denial-of-service attacks. For example, the software may elect to only send one error message per day to a given requester.��Continued on next page

��styleref "Map Title"�SET Error Processing�, continued

When NOT to send Error�An Error message shall never be sent in response to anything that appears to be an Error message. A valid SET message will begin with a tag of [30] and a length for the entire message (MessageWrapper plus message body). The MessageWrapper will contain:

a tag of [30] followed by

the length of the MessageHeader

the content of the MessageHeader

a tag for the type of message followed by the length and content of the Message.

If the tag for the type of message is 999 (indicating an Error message), a SET application shall never send a response even if the message appears to be malformed. This is to prevent loops where one Error message triggers another.��

External errors�Cardholder and merchants systems shall also anticipate errors originating from systems external to SET at any time. Examples include too many message transmission retries, exceptions occurring in the payment system, underlying network transport failures, and incorrect handling of the order information by the shopping software.��Continued on next page

��styleref "Map Title"�SET Error Processing�, continued

Creating an Error�When an application encounters a SET error, it shall create an Error message as follows: ��

Step�Action���Construct ErrorTBS as follows:

Set ErrorCode to a value specified in ErrorCode (see page � PAGEREF block_ErrorCode �110�).

Generate a fresh ErrorNonce.

If the error occurred because the application did not know how to process a critical extension (certificate or message), populate ErrorOID with the object identifier of the extension.

If the error occurred because of a problem with a certificate, populate ErrorThumb with the Thumbprint of the certificate.

If the error resulted from a signature verification failure, populate ErrorThumb with the hash of the certificate.

Construct ErrorMsg as follows: populate either the MessageHeader or the entire message (up to the size restriction of 20,000 bytes). The choice of whether to copy only the header or the entire message is left to each implementation.���Sign the Error message if a signature certificate is available.���Invoke ìCompose Message Wrapperî to send message. (See page � PAGEREF block_compose_msgwrpr �76�.)��Continued on next page

��styleref "Map Title"�SET Error Processing�, continued

Error message�The following fields are defined for Error:��

Field Name�Description��Error�< Signed Error, UnsignedError >��SignedError�S(EE, ErrorTBS)��UnsignedError�ErrorTBS

The unsigned version of Error shall only be used if the entity does not have a signature certificate.��ErrorTBS�{ErrorCode, ErrorNonce, [ErrorOID], [ErrorThumb], ErrorMsg}��ErrorCode�Enumerated code defining the error condition. See page � PAGEREF block_ErrorCode �110�.��ErrorNonce�A nonce to ensure the signature is generated over unpredictable data.��ErrorOID�The object identifier an unsupported critical extension that caused the error.��ErrorThumb�The thumbprint of the certificate that caused the error or the hash of the certificate if signature verification failure occurred.��ErrorMsg�<MessageHeader, BadWrapper>��MessageHeader�The message header of the message that produced the error.��BadWrapper�The message wrapper of the message that produced the error (up to 20,000 bytes).��Continued on next page

��styleref "Map Title"�SET Error Processing�, continued

ErrorCode�The following values are defined for ErrorCode.��

unspecifiedFailure�The reason for the failure does not appear elsewhere in this list.��messageNotSupported�This valid message type is not supported by the recipient��decodingFailure�An error was encountered during the DER decoding process on the message.��invalidCertificate�A certificate necessary to process this message was not valid (for a reason not specified elsewhere in this table). The ErrorThumb field identifies the invalid certificate.��expiredCertificate�A certificate necessary to process this message has expired. The ErrorThumb field identifies the invalid certificate.��revokedCertificate�A certificate necessary to process this message has been revoked. The ErrorThumb field identifies the invalid certificate.��missingCertificate�A certificate necessary to process this message is not available in the recipientís certificate cache and was not included in the message.��signatureFailure�The digital signature of the message could not be verified.��badMessageHeader�The message header cannot be processed.��wrapperMsgMismatch�The contents of the message wrapper are inconsistent with the internal content of the message, e.g., the RRPID does not match.��versionTooOld�The version number of the message is too old for the recipient to process.��versionTooNew�The version number of the message is too new for the recipient to process.��unrecognizedExtension�The message or a certificate contains a critical extension that the recipient cannot process. The ErrorOID field identifies the extension. If the extension appears in a certificate, the ErrorThumb field identifies the certificate.��messageTooBig�The message is too big for the recipient to process.��signatureRequired�The unsigned version of this message is not valid��Continued on next page

��styleref "Map Title"�SET Error Processing�, continued

�styleref "Block Label"�ErrorCode� (continued)���

messageTooOld�The date of the message is too new for the recipient to process.��messageTooNew�The date of the message is too new for the recipient to process.��thumbsMismatch�Thumbs sent in an unsigned request did not match those returned to the requester checking for substitution attack.��unknownRRPID�An unknown RRPID was received.��unknownXID�An unknown XID was received.��unknownXID�An unknown local identifier was received.��challengeMismatch�A challenge sent in a request did not match challenge in response.��

Sending error message�The SET protocol is based on request/response pairs throughout the protocol. The Error message does not conform to this paradigm, since it may be a response to either a request or a response. The former case poses no difficulty. However, in the latter case, difficulties may arise if the underlying transport is based on a request/response paradigm, as in a World Wide Web browser. In this case, the error message may be sent as a request message, and the protocol will not require a response message (the underlying protocol may time out). It is recognized that it may require user permission for an error message to be sent as a result of the operational constraints of a World Wide Web browser. This is acceptable, but not encouraged.��

� Additional information on CDMF is provided in the following paper: “Design of the Commercial Data Masking Facility Data Privacy Algorithm”, D. Johnson, S. Matyas, A. Le, J. Wilkins; Proceedings of the First ACM Conference on Communications and Computer Security; ACM Press, Fairfax, VA; 1993

Book 2: Programmerís Guide 		Secure Electronic Transaction Specification

Page � PAGE �2�		May 30, 1997

Secure Electronic Transaction Specification		Book 2: Programmerís Guide

May 30, 1997		Page � PAGE �3�

Version 1.0

Version 1.0

