Appendices

Overview

Introduction�This is a collection of supplementary information that is applicable to the SET specification. The appendices are categorized according to the type of information discussed:

Normative — standards and OIDs relevant to SET (A, C, E-M, R)

Informative — including industry algorithms and guidelines (B, D, N, P, S)

Examples — durations, message and certificate content (T,U,V)

All of the information provided in the normative category shall be included as part of the SET specification. ��

Organization�The following appendices are included:��

Appendix�Title�Contents�Page��� REF AppL_Standards * MERGEFORMAT �A��� REF Appx_Standards * MERGEFORMAT �External Standards��Lists the standards supported by these the SET specification.�� PAGEREF Appx_Standards �437���� REF AppL_Terminology * MERGEFORMAT �B��� REF Appx_Terminology * MERGEFORMAT �Terminology��Lists acronyms and definitions.�� PAGEREF Appx_Terminology �439���� REF AppL_Messages * MERGEFORMAT �C��� REF Appx_Messages * MERGEFORMAT �SET Messages��Provides information about when messages are used.�� PAGEREF Appx_Messages �454���� REF AppL_Fields * MERGEFORMAT �D��� REF Appx_Fields * MERGEFORMAT �SET Fields��Provides an alphabetic list of fields to assist developers who will implement cardholder and merchant systems.�� PAGEREF Appx_Fields �464���� REF AppL_Field_Support * MERGEFORMAT �E��� REF Appx_Field_Support * MERGEFORMAT �Field Support Requirements��Describes the support requirements for the SET fields defined as OPTIONAL in the ASN.1�� PAGEREF Appx_Field_Support �466���� REF AppL_Logos * MERGEFORMAT �F��� REF Appx_Logos * MERGEFORMAT �Logo Display During Certificate Registration��Discusses the display of logos during certificate registration process.�� PAGEREF Appx_Logos �482���� REF AppL_OID_overview * MERGEFORMAT �G��� REF Appx_OID_overview * MERGEFORMAT �Object Identifiers� �Describes the types of object identifiers.�� PAGEREF Appx_OID_overview �485���� REF AppL_Extn_Mech * MERGEFORMAT �H��� REF Appx_Extn_Mech * MERGEFORMAT �Extension Mechanism for SET Messages��Describes a mechanism to extend SET payment messages to support additional business functions.�� PAGEREF Appx_Extn_Mech �492���� REF AppL_OIDs_under_idset * MERGEFORMAT �K��� REF Appx_OIDs_under_idset * MERGEFORMAT �Object Identifiers under {id-set}��Describes SET OID usage and OID management.�� PAGEREF Appx_OIDs_under_idset �499���Continued on next page

��styleref "Map Title"�Overview�, continued

�styleref "Block Label"�Organization� (continued)���

Appendix�Title�Contents�Page��� REF AppL_OIDs_for_RegFormFlds * MERGEFORMAT �L��� REF Appx_OIDs_for_RegFormFlds * MERGEFORMAT �Object Identifiers for Registration Form Fields��Describes SET OIDs assigned to data content of registration form fields.�� PAGEREF Appx_OIDs_for_RegFormFlds �503���� REF AppL_Content_Types * MERGEFORMAT �M��� REF Appx_Content_Types * MERGEFORMAT �ContentTypes��Lists the content and contentType for signed data, digested data, and enveloped data.�� PAGEREF Appx_Content_Types �512���� REF AppL_Chk_digit_alg * MERGEFORMAT �N��� REF Appx_Chk_digit_alg * MERGEFORMAT �Check Digit Algorithm��Describes the algorithm used to compute the check digit.�� PAGEREF Appx_Chk_digit_alg �516���� REF AppL_Gdlines_Secure_Impl * MERGEFORMAT �P��� REF Appx_Gdlines_Secure_Impl * MERGEFORMAT �Guidelines for Secure Implementation of SET��Provides guidelines and recommendations for secure implementation of SET.�� PAGEREF Appx_Gdlines_Secure_Impl �517���� REF AppL_Root_Key * MERGEFORMAT �R��� REF Appx_Root_Key * MERGEFORMAT �Root Key��Provides the SET root key. �� PAGEREF Appx_Root_Key �561���� REF AppL_Impl_Variations * MERGEFORMAT �S��� REF Appx_Impl_Variations * MERGEFORMAT �Variations��Describes variations at discretion of brand or financial institution. �� PAGEREF Appx_Impl_Variations �563���� REF AppL_Recommendations * MERGEFORMAT �T��� REF Appx_Recommendations * MERGEFORMAT �Private Key and Certificate Duration��Provides examples of durations for certificate and private key cryptoperiods�� PAGEREF Appx_Recommendations �566���� REF AppL_Cert_Examples * MERGEFORMAT �U��� REF Appx_Cert_Examples * MERGEFORMAT �Certificate Examples��Provide an example cardholder certificate�� PAGEREF Appx_Cert_Examples �570���� REF AppL_Msg_Examples * MERGEFORMAT �V��� REF Appx_Msg_Examples * MERGEFORMAT �Message Examples��Provides examples of several data structures related to messages�� PAGEREF Appx_Msg_Examples �574���

�Appendix A�External Standards

Overview�SET design is based on standards established by industry (existing infrastructure), Internet, and international organizations as defined in ISO, IEFT, PKCS, and ANSI standards. The remainder of this appendix identifies the distinctive standards, algorithms, and certificates supported by the SET specifications.��

ASN.1�Abstract Syntax Notation

ASN.1 is the notation used by SET for specifying messages. The 1995 version of the ASN.1 specification is described in ISO/IEC 8824-1, 8824-2, 8824-3, and 8824-4 documents.��

DER�Distinguished Encoding Rules

Support the encoding of protocol data in unambiguous fashion both in payment messages and in certificates (as specified in X.509). The 1995 version of the DER specification is described in ISO/IEC 8825-1.��

DES�Data Encryption Standard

Standard for data encryption (as specified in FIPS PUB 46-2). The DES key is distributed in an encrypted form within a digital envelope using public key encryption.��

HMAC�Keyed-hashing mechanism for shared secret and blinding function��

HTTP�Hyper-Text Transport Protocol

This World Wide Web Transport Protocol supports existing WWW browsers and servers (as specified in RFC 1945).��

ISO 3166:1993�Codes for the representation of names of countries��

ISO 4217:1995�Codes for the representation of currencies and funds ��Continued on next page

��styleref "Map Title"�Overview�, continued

ISO 7812:1985�Identification Cards - Numbering system and registration procedure for issuer identifiers which includes the definition for computing for check digit��

ISO 8583:1993�Financial Transaction Card Originated Messages - Interchange Message Specifications��

ISO 9594-8:1997�ITU-T Recommendation X.509 (1997), Information Technology - Open Systems Interconnection - The Directory:Authentication.Framework

The certificate format supported by the SET specification.��

ISO 9834-7�Provides an international registration authority for object identifier arcs. ��

MIME�Multipurpose Internet Message Extensions

Used for encoding of envelopes for payment messages, supports browser recognition of payment messages, and supports electronic mail based commerce.��

PKCS�Public Key Cryptography Standards

Define the cryptographic message syntax (PKCS #7) and certificate request message syntax (PKCS #10).��

RFC 1766�Language tag standard��

SHA-1�Secure Hashing Algorithm

Developed jointly by NIST and NSA (as specified in FIPS 180-1). SET uses SHA-1 for all digital signatures. ��

TCP/IP�Protocol family supporting Internet communication��

X.509�ITU-T Recommendation X.509 (1997)|ISO/IEC 9594-8:1997 Standard for encoding of Public Key Certificates

The certificate format supported by the SET specification is defined in the ISO standard X.509 version 3; ANSI X9.57 (also ISO/IEC 9594-8:1993).��

�Appendix B�Terminology

Organization�This appendix includes the following lists:

Acronyms

Glossary

ASN.1 Symbols Used by SET��

�Acronyms

ADB�Actual Data Block (OAEP)��ANSI�American National Standards Institute��API�Application Programming Interface��ASCII�American Standard Code for Information Interchange��ASN.1�Abstract Syntax Notation One��AVS�Address Verification Service��Base64�Encoding scheme used with MIME mapping to map full 8-bit bytes into 64-character set��BC�Block Contents (OAEP)��BCA�Brand Certificate Authority��BCI�Brand CRL Identifier��BID�Business Identification��BIN�Bank Identification Number��BT�Block Type (OAEP)��C�Cardholder��CA�Certificate Authority��CBC�Cipher Block Chaining��CCA�Cardholder Certificate Authority��CD-ROM�Compact Disk Read Only Memory��CDMF�Commercial Data Masking Facility��Cn�Certificate for nth generation of the Root Signature Key��CPS�Custom Payment Service��CRL�Certificate Revocation List��CRLF�Carriage Return, Line Feed��Continued on next page

��styleref "Map Title"�Acronyms�, continued

DB�Data Block (OAEP)��DD�Digested Data��DEA�Data Encryption Algorithm��DEK�Data Encryption Key (OAEP)��DER�Distinguished Encoding Rules��DES�Data Encryption Standard��DN�Distinguished Name��E�Asymmetric Encryption operator��EE�End Entity: Cardholder (C), Merchant (M), or Payment Gateway (P)��EH�Integrity Encryption operator��EK�Symmetric Encryption with a provided key operator��Enc�Simple Encapsulation with signature��EncB�Simple Encapsulation with signature and encrypted baggage��EncBX�Extra Encapsulation with signature and encrypted baggage��EncK�Simple Encapsulation with signature and a provided key��EncX�Extra Encapsulation with signature��E�Salt�A fresh, random salt (OAEP)��EX�Extra Encryption operator��EXH�Extra Encryption with Integrity operator��FIPS PUB�Federal Information Processing Standards Publication��Continued on next page

��styleref "Map Title"�Acronyms�, continued

GCA�Geo-political Certificate Authority��GIF�Graphics Interchange Format��H�SHA-1 Hash operator��Hn �Hash (SHA-1) of Certificate for nth generation of the Root Signature Key��H1�Hashing #1 operator for OAEP (returns leading bytes)��H2�Hashing #2 operator for OAEP (returns trailing bytes)��HDC�Host Data Capture��HMAC�Keyed Hashing Message Authentication Code��HTML�Hyper-Text Markup Language��HTTP�Hyper-Text Transfer Protocol��IANA�Internet Assigned Numbers Authority��IEC�International Electrotechnical Commission��IETF�Internet Engineering Task Force��IIC�Institution Identification Code��IIN�Institution Identification Number��IP�Internet Protocol��ISO�International Organization for Standardization��ITU�International Telecommunication Union��L�Linkage operator��M�Merchant��MAC�Message Authentication Code��MCA�Merchant Certificate Authority��MCC�Merchant Category Code��MD5�Message Digest (Version 5)��MIME�Multipurpose Internet Message Extensions��MOTO�Mail Order/Telephone Order��NIST�National Institute of Standards and Technology��NSA�National Security Agency��Continued on next page

��styleref "Map Title"�Acronyms�, continued

OAEP�Optimal Asymmetric Encryption Padding��OD�Order Description: out-of-band shopping data exchanged between cardholder and merchant��OI�Order Instruction (or Information)��OID�Object Identifier��OLE�Object Linking and Embedding��P�Payment Gateway��PAN�Primary Account Number��PCA�Payment Gateway Certificate Authority��PDB�Padded Data Block (OAEP)��PGWY�Payment Gateway��PI�Payment Instruction (or Information)��PIN�Personal Identification Number��PKCS�Public Key Cryptography Standards��PK�E�Public Key for Encryption��PK�S�Public Key for Signature��POS�Point of Sale��RA�Registration Authority��Rn �Root Signature Key #n��RCA�Root Certificate Authority��RFC�Request For Comments��RRPID�Request/Response Pair Identifier��RSA�Rivest Shamir Adleman (RSA is also an example of public key cryptography)��RSADSI�RSA Data Security Incorporated��S�Signed Message operator��SAIC�Science Applications International Corporation��SET�Secure Electronic Transaction��SHA-1�Secure Hash Algorithm��Continued on next page

��styleref "Map Title"�Acronyms�, continued

SMTP�Simple Mail Transfer Protocol��SO�Signature Only operator��TBE�To Be Enveloped��TBL�To Be Linked��TBS�To Be Signed��TCP�Transmission Control Protocol��TDC�Terminal Data Capture��UDP�User Datagram Protocol��URL�Universal Resource Locator��USA�United States of America��UTC�Universal Time Coordinated��V�Verification String (OAEP)��W3C�World Wide Web Consortium��WWW�World Wide Web��XOR�Exclusive “or” bit operation��

�Glossary

Acquirer�The financial institution (or its agent) that acquires from the card acceptor the financial data relating to the transaction and initiates that data into an interchange system.��Array�A logical grouping of fields or data structures that may be repeated multiple times in a message.��Authentication�The process that seeks to validate identity or to prove the integrity of information. Authentication in public key systems uses digital signatures.��Authorization�The process by which a properly appointed person or persons grants permission to perform some action on behalf of an organization. This process assesses transaction risk, confirms that a given transaction does not raise the account holder’s debt above the account’s credit limit, and reserves the specified amount of credit. (When a merchant obtains authorization, payment for the authorized amount is guaranteed — provided, of course, that the merchant followed the rules associated with the authorization process.)��Authorization Reversal�A transaction sent when a previous authorization needs to be canceled (a full reversal) or decreased (a partial reversal). A partial reversal contains one additional field, the replacement amount, which will be less than the authorized amount. A full reversal will be used when the transaction can not be completed, such as when the cardholder cancels the order or the merchant discovers that the goods are no longer available (discontinued). A partial reversal will be used when the authorization was for the entire order and some of the goods cannot be shipped (resulting in a split shipment).��Baggage�A term denoting an opaque encrypted tuple, which is included in a SET message but appended as external data to the PKCS encapsulated data. This avoids super-encryption of the previously encrypted tuple, but guarantees linkage with the PKCS portion of the message.��Continued on next page

��styleref "Map Title"�Glossary�, continued

Bolt-on Application�A “helper” application that provides easy technique for supporting additional functionality to a mail-reader or browser using the MIME technique for specifying a relationship between data types and application programs.��Browser�Software running on the cardholder processing system that provides an interface to public data networks.��Capture�A transaction sent after the merchant has shipped the goods. This transaction will trigger the movement of funds from the Issuer to the Acquirer and then to the merchant’s account.��Capture Reversal�A transaction sent when the information in a previous capture message was incorrect or should never have been sent (such as when the goods were not actually shipped). If the capture reversal is the result of incorrect information, it will be followed by a new capture message with the corrected information.��Cardholder�The holder of a valid payment card account and user of software supporting electronic commerce.��Certificate�A special kind of digitally signed data structure that contains information about a public key and the owner of the public key. SET defines the following certificate types: signature, key encipherment, certificate signature, and CRL signature.��Certificate Authority�An entity trusted by one or more users to create and assign certificates.��Certificate Chain�An ordered grouping of digital certificates, including the Root certificate, that are used to validate a specific certificate.��Certificate Renewal�The process by which a new certificate is created for an existing public key.��Certificate Revocation�The process of revoking an otherwise valid certificate by the entity that issued the certificate.��Certificate Revocation List�A list of certificate serial numbers previously issued by a certificate authority that indicate the certificates that are invalid prior to normal expiration due to compromise, disaffiliation, or some other unusual circumstance.��Certification�The process of ascertaining that a set of requirements or criteria has been fulfilled and attesting to that fact to others, usually with some written instrument. A system that has been inspected and evaluated as fully compliant with the SET protocol by duly authorized parties and process would be said to have been certified compliant.��Continued on next page

��styleref "Map Title"�Glossary�, continued

Confidentiality�The protection of sensitive and personal information from unintentional and intentional attacks and disclosure.��Credit�A transaction sent when the merchant needs to return money to the cardholder (via the Acquirer and the Issuer) following a valid capture message, such as when goods have been returned or were defective.��Credit Reversal�A transaction sent when the information in a previous credit transaction was incorrect or should never have been sent.��Cryptographic Key�A value which is used to control a cryptographic process, such as encryption or authentication. Knowledge of an appropriate key allows correct decryption or validation of a message.��Cryptography�Mathematical process used for encryption or authentication of information. The discipline which embodies principles, means, and methods for the transformation of data in order to hide its information content, prevent its undetected modification and unauthorized use, or a combination thereof.��Cryptoperiod�The time span during which a specific key is authorized for use or in which the keys for a given system may remain in effect.��Customer Agreement�Contract with a customer that sets forth the customer’s responsibilities and governs which security process will be used in the conduct of business between the institution and customer.��Destruction of Information�Any condition that renders information unusable, regardless of cause.��Dictionary Attack�A cryptographic attack where the attacker builds a dictionary by encrypting known data with all possible keys so that the key for any given message may be easily obtained by looking up the encrypted data in the dictionary.��Digital Envelope�A cryptographic technique to encrypt data and send the encryption key along with the data. Generally, a symmetric algorithm is used to encrypt the data and an asymmetric algorithm is used to encrypt the encryption key.��Digital Signature�Information encrypted with an entity’s private key, which is appended to a message to assure the recipient of the authenticity and integrity of the message. The digital signature proves that the message was signed by the entity owning, or having access to, the private key.��Disclosure of Information�Any condition that results in unauthorized viewing or potential viewing of information.��Dual Signature�A digital signature that covers two or more data structures by including secure hashes for each data structure in a single encrypted block. Dual signing is done for efficiency, that is, to reduce the number of public key encryption operations.��Continued on next page

��styleref "Map Title"�Glossary�, continued

Electronic Commerce�The exchange of goods and services for payment between the cardholder and merchant when some or all of the transaction is performed via electronic communication.��Encryption�The process of converting information in order to render it into a form unintelligible to all except holders of a specific cryptographic key. Use of encryption protects information between the encryption process and the decryption process (the inverse of encryption), against unauthorized disclosure.��Financial Institution�An establishment responsible for facilitating customer-initiated transactions or transmission of funds for the extension of credit or the custody, loan, exchange, or issuance of money.��Fresh�A property associated with value for a field (for example, symmetric keys, nonces and transaction identifiers) which guarantees that the value is unique.��Goods and Services Order�The price, currency, payment method, number of payments, and other terms of the transaction (also referred to as the “Order Description” in SET). ��Hardware Token�A portable device (for example, smart card, and PCMCIA cards) specifically designed to store cryptographic information and possibly perform cryptographic functions in a secure manner.��Hash�A function that maps values from a large (possibly very large) domain into a smaller range. It may be used to reduce a potentially long message into a “hash value” or “message digest”, which is sufficiently compact to be input into a digital signature algorithm. A “good” hash is such that the results of applying the function to a (large) set of values in the domain will be evenly (and randomly) distributed over the range.��Host Data Capture�This is a processing option under which an Acquirer host system stores or “captures” merchant transactions for payment. Depending on the operation of the system, the agreement between the merchant and the Acquirer, and the type of transactions involved, the merchant may send a combined authorization request and capture request in a single message known as a “sale” request. Other options support the separate authorization and capture transactions, as well as a number of post-processing options for capture batch balancing.��Idempotency�The property whereby one can repeat an operation and the result is the same. In terms of protocol, sending an idempotent message repeatedly would result in no change of outcome.��Installment Payments�A type of payment transaction negotiated between the merchant and the cardholder which permits the merchant to process multiple authorizations. Cardholder specifies a maximum number of permitted Authorizations for paying through installment payments.��Continued on next page

��styleref "Map Title"�Glossary�, continued

Integrity�The quality of information or a process that is free from error, whether induced accidentally or intentionally.��Interactive�A generic class for a network transport mechanism that is dependent on a logical session being maintained during the message exchange (for example, World Wide Web sessions).��Internet�The largest collection of networks in the world, interconnected in such a way as to allow them to function as a single virtual network.��Interoperability�The ability to exchange messages and keys, both manually and in an automated environment, with any other party implementing this standard, provided that both implementations use compatible options of this standard and compatible communications facilities.��Issuer�The financial institution or its agent that issues the unique primary account number (PAN) to the cardholder for the payment card brand.��Language�The designation of the language preference to be used when initiating a certificate or purchase request.��Mail Order/Telephone Order�The type of payment card transaction where the order and payment information are transmitted to the merchant either by mail or by telephone, in contrast to a “card present” or face-to-face transaction, in which the customer makes a purchase at the merchant’s store. This type of transaction is also referred to as a “MOTO transaction.”��Merchant�A seller of goods, services, and/or other information who accepts payment for these items electronically. The merchant may also provide electronic selling services and/or electronic delivery of items for sale.��Message Authentication Code�The code, appended to a message by the sender, which is the result of processing the message through a cryptographic process. If the receiver can generate the same code, confidence is gained that the message was not modified and that it originated with the holder of the appropriate cryptographic key.��Message Digest�The fixed-length result when a variable-length message is fed into a one-way hashing function. Message digests help verify that a message has not been altered because altering the message would change the digest.��Message Wrapper�A common set of data elements that is prefixed to each SET message to identify the particular protocol version, revision, date/time, transaction identifiers, and request/response pair identifiers (RRPID) for this cycle.��Modification of Information�The unauthorized or accidental change in information, whether detected or undetected.��Network�A collection of communication and information processing systems that may be shared among several users.��Continued on next page

��styleref "Map Title"�Glossary�, continued

Non-interactive�A generic class for a network transport mechanism that is not dependent on a logical session being maintained during the message exchange (for example, electronic mail sessions).��Non-repudiation�The proof of the integrity and origin of data – both in an unforgeable relationship – which can be verified by any party. SET does not support non-repudiation.��Nonce�A randomly generated value used to defeat “playback” attacks.��OAEP�Optimal Asymmetric Encryption Padding is a method, developed by M. Bellare and P. Rogaway, for securely padding public-key encrypted data.��Opaque�Data whose format and content is specified outside of this specification.��Optional�A term used to indicate that a field, data structure or message is not universally required. Optional fields, data structures or messages may be required in specific contexts.��Order Inquiry�The request made by the cardholder to the merchant to determine the status of a purchase request.��Ordered Array�A logical grouping of fields or data structures which may be repeated multiple times in a message and for which the relative ordering of each occurrence is significant.��Out-of-band�Information exchanged using a means of communication that is independent of the SET protocol specification.��Payload�The information sent with a message that encompasses the business data.��Payment Card�A term used in SET to collectively refer to credit cards, debit cards, charge cards, and bank cards issued by a financial institution and which reflects a relationship between the cardholder and the financial institution.��Payment Gateway�A system operated by an Acquirer for the purpose of providing electronic commerce services to the merchants in support of the Acquirer, and which interfaces to the Acquirer to support the authorization and capture of transactions.��Policy�A data element defined in the X.509 certificate that designates the brand’s policy on how the certificate will be used.��Primary Account Number (PAN)�The assigned number that identifies the card issuer and cardholder. This account number is composed of an issuer identification number, an individual account number identification, and an accompanying check digit, as defined by ISO 7812-1985.��Continued on next page

��styleref "Map Title"�Glossary�, continued

Private Key�A cryptographic key used with a public key cryptographic algorithm, uniquely associated with an entity and not made public. This key is used to create digital signatures or to decrypt messages or files.��Pseudo-random�A value that is statistically random and essentially unpredictable although generated by an algorithmic process.��Public Key�A cryptographic key used with a public key cryptographic algorithm, uniquely associated with an entity publicly available publicly. It is used to verify signatures that were created with the matched private key. Public keys are also used to encrypt messages or files that can only be decrypted using the matched private key.��Public Key Certificate�Public key and identification data signed by a certificate authority to provide authentication and integrity of the key. ��Public Key Cryptography �A field of cryptography invented in 1976 by Whitfield Diffie and Martin Hellman. Public key cryptography depends on a matched pair of inverse keys. Information encrypted with one key can only be decrypted with the other. This public key provides a user with the facility to both encrypt and decrypt data or text.��Random�A value in a set that has equal probability of being selected from the total population of possibilities and is hence unpredictable.��Recurring Payments�A type of payment transaction initiated by the cardholder that permits the merchant to process multiple authorizations. There are two kinds of recurring payments: multiple payments for a fixed amount (for example, four easy payments of $19.95) or repeated billings (for example, a monthly bill from an Internet service provider).��Registration Authority�An independent third-party organization that processes payment card applications for multiple payment card brands and forwards applications to the appropriate financial institutions.��Replay�An attack in which a valid message is repeated, either by the authorized originator (that is, the merchant replays a message) or by an adversary posing as the originator. Therefore, the replayed message appears valid, except for refresh nonces.��Request-Response Pair�A pair of messages flowing in opposite directions between the same parties and sharing the same RRPID.��Risk�The possibility of loss because of one or more threats to information (not to be confused with financial or business risk).��Root Certificate�The certificate at the top of the certificate hierarchy.��Continued on next page

��styleref "Map Title"�Glossary�, continued

Sales Transaction�A payment authorization transaction that allows a merchant to authorize a transaction and request payment in a single message to the Acquirer.��Sequence�An abstract grouping of zero or more data elements. Also called a “tuple.”��Server�A computer that acts as a provider of some service to other computers, such as processing communications, interface with file storage, or printing facility.��Spamming�An inappropriate use of a networked communications facility in which the same message is sent simultaneously to many recipients.��Split Shipment�Occurs when the merchant is unable to provide or deliver one or more of the requested goods and services to the cardholder, most likely due to insufficient inventory. The merchant indicates an intention to perform a subsequent authorization request to the Acquirer for the backordered goods and services.��Substitution Attack�An attack in which the attacker substitutes one message for another��Terminal Data Capture�A processing option in which authorized transactions are held in a merchant-based system and submitted to the Acquirer as a capture transaction at a time controlled and specified by the merchant. Under this option, the merchant controls the contents of the “transaction batch”, as well as the time of capture transaction submission. The Acquirer is not required to maintain capture files on behalf of the merchant.��Threat�A condition which may cause information or information processing resources to be intentionally or accidentally lost, modified, exposed, made inaccessible, or otherwise affected to the detriment of the institution.��Thumbprint�The hash calculated over an item to generate or verify the signature.��Thumbs�An instance of one or more thumbprints.��Transaction�A sequence of one or more related messages.��Trust Chain�A synonym for certificate chain.��Tuple�An abstract grouping of zero or more data elements. Also called a “sequence.”��Unavailability of Service�The inability to access information or information processing resources for any reason, such as disaster, power failure, or malicious actions.��

�ASN.1 Symbols Used by SET

BIT STRING�A field containing a sequence of zero or more bits��BMPString�A field containing a sequence of Basic Multilingual Plane (BMP) characters��BOOLEAN�A field containing a value of either TRUE or FALSE��CHOICE�A field containing a union of one or more types��CLASS�An intrinsic type used to define additional data types using simple type definitions and constraint rules��ENUMERATED�A field whose value is bound to pre-defined identifiers��GeneralizedTime�A field containing a string a calendar date and time��IA5String�A field containing a sequence of IA5 (ASCII subset) characters��INTEGER�A field containing a integer number value��NULL�A field containing a null value��NumericString�A field containing a string of digits or space��OBJECT IDENTIFIER�A sequence of integers that identify an object��OCTET STRING�A field containing a sequence of 8-bit values��PrintableString�A field containing a sequence of printable characters��REAL�A field containing a real number value��SEQUENCE�A type containing an ordered collection of one or more fields��SET�A type containing an unordered collection of one or more fields��TYPE-IDENTIFIER�An intrinsic type used to refer to the value of an OBJECT IDENTIFIER type by its unique identifier��UniversalString�A field containing a sequence of universal characters��UTCTime�A field containing a string a calendar date and time using two digit year��VisibleString�A field containing a string of visible characters��

�Appendix C�SET Messages

Overview

Purpose�SET supports variations in the message protocol, the message data, and the protocol implementation. These variations are necessary in order to satisfy the business requirements and policies established by the payment card brand, Acquirer, and merchant.

This appendix summarizes the messages, including variations.

Appendix � REF AppL_Fields * MERGEFORMAT �D� describes the message data structures and fields.

Appendix � REF AppL_Field_Support * MERGEFORMAT �E� describes the field support requirements for the SET data structure and fields that are described as OPTIONAL in the ASN.1.

Appendix � REF AppL_Impl_Variations * MERGEFORMAT �S� describes implementation variations.��

Organization�This appendix includes the following topics:��

Topic�Contents�Page��� REF map_Cert_Msgs * MERGEFORMAT �Certificate Request Messages��Lists all certificate request/response pairs, indicates which are optional, and under what circumstances.�� PAGEREF map_Cert_Msgs �455���� REF map_Pay_Sys_Msgs * MERGEFORMAT �Payment System Messages��Lists all payment system request/response pairs, indicates which are optional (and under what circumstances), and provides information about processing variations.�� PAGEREF map_Pay_Sys_Msgs �458���

Error message�In addition to the certificate request messages and payment system messages, SET includes an error message.

This message is used to notify the sender when a receiver of a SET message determines that it is corrupted or cannot be processed by the recipient to the point of sending a response message.��

�Certificate Request Messages

Messages�SET includes the following certificate request messages:��

CardCInitReq�CardCInitRes�Cardholder’s certificate initialization messages��Me-AqCInitReq�Me-AqCInitRes�Merchant or Acquirer Certificate Initialization messages��RegFormReq�RegFormRes�Cardholder’s Registration Form messages��CertReq�CertRes�Certificate request and response messages��CertInqReq�CertInqRes�Certificate Inquiry messages��

�The following pages indicate which of these messages are optional, and under what circumstances.��Continued on next page

��styleref "Map Title"�Certificate Management Request Messages�, continued

Requirements for message support�� REF _Ref388894246 * MERGEFORMAT �Table 75� defines the requirements for support of SET certificate request messages in applications created for various end entities.

An M in the column for an end entity indicates that support for the message is mandatory; applications created for that end entity shall support the message.

An O in the column for an end entity indicates that support for the message is optional; a vendor creating applications for that end entity may choose not to support the message (within limitations described below).

Either of these indicators may be followed by one or more numbers in parentheses that specify conditions for support of the message. The conditions are described on page � PAGEREF block_Support_cond_cert �457�.

An x in the Idempotent column indicates that the recipient of the message shall preserve the idempotency property presented in Part I on page � PAGEREF map_Idempotency �69�.��

Message�Cardholder�Merchant�Payment �Gateway�CA�Idempotent��CardCInitReq�O (1, 2)���M���CardCInitRes�O (1, 2)���M���Me-AqCInitReq��O (1)�O (1)�M���Me-AqCInitRes��O (1)�O (1)�M���RegFormReq�O (1, 2)���M���RegFormRes�O (1, 2)���M���CertReq�M�M�M�M�x��CertRes�M�M�M�M�x��CertInqReq�O (1, 3)�O (1, 3)�O (1, 3)�M���CertInqRes�O (1, 3)�O (1, 3)�O (1, 3)�M���Table � SEQ Table * ARABIC �75�: Certificate Request Message Summary

Continued on next page

��styleref "Map Title"�Certificate Management Request Messages�, continued

Support�conditions�The following are conditions that apply to the support of various certificate request messages. These numbers are used as codes in � REF _Ref388894246 * MERGEFORMAT �Table 75� on page � PAGEREF _Ref388897791 �456�.

An application that ships with a registration form and certificates for the financial institution may support only the CertReq/CertRes pair. Note: Such an application will not function for any other financial institution and shall cease to function when the CA certificate expires. For example, an issuing bank can ship a wallet to its cardholders that is pre-loaded with an appropriate registration form.

Cardholder software need not support these message pairs if there exists an out-of-band alternative for obtaining the CA’s public key and the registration template specified by the payment card brand’s Issuing financial institution. CardCInitReq/Res and RegFormReq/Res are intended to support on-line requests for certificates in environments that require cardholder certificates.

Support of CertInqReq and CertInqRes depends upon the characteristics of the intended communications environment.

When direct communications exists between the cardholder and merchant using an interactive transport (as in the WWW), cardholder, Merchant, and Payment Gateway software shall support CertInqReq and CertInqRes.

When the communications between cardholder and merchant occurs indirectly through a non-interactive transport (as with e-mail), neither of those entities is required to support this message pair.��

�Payment System Messages

Messages�SET includes the following payment system messages:��

PInitReq�PInitRes�Payment initialization messages��PReq�PRes�Purchase request and response messages��InqReq�InqRes�Inquiry messages��AuthReq�AuthRes�Authorization request and response messages��CapReq�CapRes�Capture request and response messages��AuthRevReq�AuthRevRes�Authorization reversal messages��CapRevReq�CapRevRes�Capture reversal messages��CredReq�CredRes�Credit messages��CredRevReq�CredRevRes�Credit reversal messages��PCertReq�PCertRes�Fetch certificate messages��BatchAdminReq�BatchAdminRes�Batch administration messages��

�The following pages provide information about processing variations. � REF _Ref388896888 * MERGEFORMAT �Table 76� on page � PAGEREF _Ref388898675 �462� indicates which of these messages are optional, and under what circumstances.��Continued on next page

��styleref "Map Title"�Payment System Messages�, continued

PInitReq

PInitRes�Payment initialization messages.

Enables the merchant to send encryption certificate(s) to the cardholder. Optional depending upon the characteristics of the intended communications environment. See page � PAGEREF block_Pmt_msg_support_conditions �463�.��

PReq

PRes�Purchase request and response messages.

In order to permit maximum flexibility needed to support the variety of business models, some merchants may elect to send the PRes message at different stages during the transaction’s processing using SET. Depending upon the operating guidelines established by the brand as well as the relationship between a specific merchant and its Acquirer, some merchants may wait until authorization and capture responses are received from the Acquirer before sending PRes. A merchant may elect to send the PRes message after an authorization-only response has been received from the Acquirer.

There can also be variations due to the environment used to send the PReq to the merchant. In a non-interactive transport environment, the merchant software may be able to wait until inventory has been checked and the authorization has been obtained. The Inquiry message (InqReq) has been provided so that the cardholder can determine the status of an order at any time. Note that the Purchase Response and the Inquiry Response are identical (with the details changing over time as the order is processed).

The preferred implementation is to send back PRes after authorization; however, this is dependent upon the processing environment.��Continued on next page

��styleref "Map Title"�Payment System Messages�, continued

InqReq

InqRes�Inquiry messages.

Enables the cardholder to obtain status of a transaction. Multiple inquiry messages can be sent referencing the same transaction after the PInitRes optional message has been received or PReq sent. Inquiries originating from cardholders without certificates are not signed and their integrity may not be guaranteed.

The format of this message is dependent upon whether the payment card brand requires a signature certificate for its cardholders. If cardholder certificates are required, the signed variant of InqReq is used, otherwise its unsigned format is used.

The merchant is required to verify that the certificate accompanying the InqReq signed format matches the certificate originally used with PReq. This prevents one cardholder from inquiring about another cardholder’s purchases.��

AuthReq

AuthRes�Authorization request and response messages used by the merchant to request authorization from its Acquirer.��

CapReq

CapRes�Capture request and response messages.

Not required if capture is performed outside of SET. When capture is performed using SET and depending upon the merchant’s relationship with the Acquirer, full capture capability allows the merchant to request a capture after authorization or alternatively using an authorization-and-capture request or “sale transaction”. In addition, full capture includes the capture reversal message pair.��

AuthRevReq

AuthRevRes�Authorization reversal messages.

Supports the merchant’s need to cancel an authorization or to reduce the amount of a prior authorization request. Depending upon the payment card brand’s policy, the merchant may reduce the amount of a prior authorization by sending a replacement amount in the AuthRevReq message. This replacement amount may be less than the amount of the original authorization.��

CapRevReq

CapRevRes�Capture reversal messages.

Supports the merchant’s need to change or eliminate a previous capture request sent to the Acquirer. It is used when there has been an error in processing of the capture request, such as when the merchant inputs the incorrect amount for shipping. In general, this message will be processed the same business day as the capture and the cardholder will never be aware of its existence.��Continued on next page

��styleref "Map Title"�Payment System Messages�, continued

CredReq

CredRes�Credit messages.

Supports the merchant’s need to refund money to the cardholder, such as in the case of damaged goods, on a previously captured transaction. In general, this message will not be processed the same business day as the capture and the credit will appear on the cardholder’s statement.��

CredRevReq

CredRevRes�Credit reversal messages.

Supports the merchant’s need to reverse a previous, erroneously granted credit.��

PCertReq

PCertRes�Fetch certificate messages.

Used by the merchant to obtain current certificate and CRLs on-demand from its Acquirer.��

BatchAdminReq

BatchAdminRes�Batch administration messages.

Depending upon the relationship between the merchant and Acquirer, the merchant can assign an identifier to a batch of capture items to be processed together. This message pair can then be used by the merchant to facilitate end-of-day processing functions and manage capture token batches that result from full capture processing��Continued on next page

��styleref "Map Title"�Payment System Messages�, continued

Requirements for message support�� REF _Ref388896888 * MERGEFORMAT �Table 76� defines the requirements for support of SET payment system messages in applications created for various end entities.

An M in the column for an end entity indicates that support for the message is mandatory; applications created for that end entity shall support the message.

An O in the column for an end entity indicates that support for the message is optional; a vendor creating applications for that end entity may choose not to support the message (within limitations described below).

Either of these indicators may be followed by one or more numbers in parentheses that specify conditions for support of the message. The conditions are described on page � PAGEREF block_Support_cond_pay �463�.

An x in the Idempotent column indicates that the recipient of the message shall preserve the idempotency property presented in Part I on page � PAGEREF map_Idempotency �69�.��

Message�Cardholder�Merchant�Payment �Gateway�CA�Idempotent��PInitReq�O (1)�M (1)�����PInitRes�O (1)�M (1)�����PReq�M�M���x��PRes�M�M���x��InqReq�M�M�����InqRes�M�M�����AuthReq��M�M��x��AuthRes��M�M��x��CapReq��O (2)�O (2)��x��CapRes��O (2)�O (2)��x��AuthRevReq��M�M��x��AuthRevRes��M�M��x��CapRevReq��O (2)�O (2)��x��CapRevRes��O (2)�O (2)��x��CredReq��O�O��x��CredRes��O�O��x��CredRevReq��O�O��x��CredRevRes��O�O��x��PCertReq��M�M����PCertRes��M�M����BatchAdminReq��O�O��x��BatchAdminRes��O�O��x��Table � SEQ Table * ARABIC �76�: Payment System Message Summary

Continued on next page

��styleref "Map Title"�Payment System Messages�, continued

Support conditions�The following are conditions that apply to the support of various certificate request messages. These numbers are used as codes in � REF _Ref388896888 * MERGEFORMAT �Table 76� on page � PAGEREF _Ref388897775 �462�.

Support of PInitReq and PInitRes by the cardholder and merchant depends upon the characteristics of the intended communications environment.

When direct communications exists between the cardholder and merchant using an interactive transport (as in the WWW), then both cardholder and merchant should implement PInitReq and PInitRes.

When the communications between cardholder and merchant occurs indirectly through a non-interactive transport (as with e-mail), then both cardholder and merchant need not support PInitReq and PInitRes.

The merchant and payment gateway systems are not required to support capture related messages. If such support is not included, the merchant software must have an alternative interface for sending transactions to the Acquirer.

The merchant and payment gateway systems are not required to support the BatchAdminReq and BatchAdminRes message if an alternative method is agreed upon between the Merchant and Acquirer.��

�Appendix D�SET Fields

Overview`�This appendix provides an alphabetic list of fields to assist developers who will implement cardholder and merchant systems. For each field, the following information is provided:

definition,

names of the messages in which the field occurs,

whether the field is required, omitted, or optional in various contexts.

Note: as of the publication date, the editing of this appendix had not been completed. This appendix will be published at a later date.��

Brand payment system fields�Each brand will separately publish a mapping between SET fields and the fields used by the brand’s payment system.��Continued on next page

��styleref "Map Title"�Payment System Messages�, continued

�This page reserved for SET field information.��

�Appendix E�Field Support Requirements

Introduction

Support for optional fields�Many SET fields are described as OPTIONAL in the ASN.1.

This appendix documents the support requirements of the optional fields. That is, certain fields shall be supported by the applications created for various end entities, regardless of the choices the end entities might make about using the fields in various contexts.

For example:

The field might not be required by a particular Acquirer, and might therefore be omitted by a Merchant sending transactions to that Acquirer.

Certain fields are required in a response message only if they were provided in the corresponding request message.��

Organization�This appendix includes the following topics:��

Support Conditions�A numbered list of conditions related to support of certain fields. The numbers are used in the Field Support Summary to link specific fields with specific conditions.��Support Requirements�A table listing all optional fields and indicating the conditions for support of each.��

Compatibility and interoperability�The recipient of a SET message shall bear the burden of compatibility/interoperability when generating responses. Messages subsequently generated by the recipient shall be an accurate reflection of the information associated with the transaction already received.��

�Support Conditions

Support conditions�The following are conditions that apply to the support of various fields. These numbers are used as codes in the Field Support Summary that begins on page � PAGEREF block_Field_Support_Smry �468�.

An application shall recognize the presence of a message extension, test the critical flag and return an Error message if the flag is critical and the extension identified by the extnID is not supported.

An application may optionally include its own local identifier in a request or response message; recipients of the message shall copy the local identifier into any subsequent message generated for the same transaction.

An application with a valid signature certificate shall sign the Error message.

Inclusion of thumbprints in a request is at the discretion of the application generating the request; omitting or including certificates, CRLs and BrandCRLIdentifiers in a response based on the thumbprints is at the discretion of the application generating the response.

The application generating the response shall copy the thumbprints from the request message; the application receiving the response shall verify that the thumbprints in the response match the request.

If the Me-AqCInitRes message includes AcctDataField, the EncX choice of CertReq shall be used; otherwise, the Enc choice shall be used.

A Cardholder CA is not required to support this option.

A Merchant or Payment Gateway CA is not required to support this option.

A Payment Gateway that supports CapReq shall perform capture processing for the transaction if the authorization request is approved; a Payment Gateway that does not support CapReq shall return a value of captureNotSupported in the AuthCode field.

Merchant software intended to be used in a Travel and Entertainment market segment (Auto Rental, Hotel, or Passenger Transport) shall support the additional data requirements of the market segment; all other SaleDetail fields may be supported at the discretion of the application vendor.

Support for this SaleDetail field is recommended.

Support for CommercialCardData is only necessary if�(the merchant supports commercial card products and�(enhanced data is not transmitted through other channels (out of band to SET).

The requirements for inclusion of this field are specified by each brand.

The requirements for inclusion of this field are determined by the Acquirer operating the Payment Gateway.

The requirements for inclusion of this certificate or CRL field are determined by each brand.��

�Support Requirements

Using the Field Support Summary�An M in the column for an end entity indicates that support for the field is mandatory; applications created for that end entity shall support the field.

An O in the column for an end entity indicates that support for the field is optional; a vendor creating applications for that entity may choose not to support the field.

Either of these indicators may be followed by one or more numbers in parentheses that specify conditions for support of the field. Shading is used to highlight the fields or data structures that are common to multiple messages/data structures. The conditions are described on page � PAGEREF map_Support_Conditions �467�.��

Fields listed for one entity�Some fields are listed for only one entity. If a different entity receives a SET message that includes one of these fields, the entity may have to copy the field and send it back in a subsequent message.��

Field Support Summary���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��AcctInfo�acctData��M�M�M (7)��Me-AqCInitResTBS�acctDataField��M�M�M��PIHead�acqBackInfo�M��O���AuthTokenData�acqBackKeyData���M���AuthResBaggage�acqCardMsg��M�O���Results�acqCardMsg�M�M����AcqCardMsgData�acqCardPhone�M��O���AcqCardMsgData�acqCardText�M��O���AcqCardMsgData�acqCardURL�M��O���AcquirerID�acquirerBusinessID��M�M�M��SetPolicyQualifier�additionalPolicies�O (15)�O (15)�O (15)�O (15)��MerTermIDs�agentNum��M�M���AuthValCodes�approvalCode��M�M���AuthReqPayload�aRqExtensions��O�M (1)���AuthResPayload�aRsExtensions��M (1)�O���AuthRevReqData�aRvRqExtensions��O�M (1)���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��AuthRevResData�aRvRsExtensions��M (1)�O���AutoCharges�auditAdjustment��O (10)�O���HotelCharges�auditAdjustment��O (10)�O���AuthValCodes�authCharInd��O (13)�O (13)���SaleDetail�authCharInd��O (13)�M (13)���SignerInfo�authenticatedAttributes�M�M�M�M���������AuthorityKeyIdentifier�authorityCertIssuer�O (15)�O (15)�O (15)�O (15)��AuthorityKeyIdentifier�authorityCertSerialNumber�O (15)�O (15)�O (15)�O (15)��AuthRevReqData�authReqData��M�M���CapPayload�authReqItem��M�M���CapPayload�authResPayload��M�M���AuthRevReqData�authResPayload��M�M���AuthResDataNew�authResPayloadNew��M�M���AuthTags�authRetNum��M (13)�M (13)���AuthRevTags�authRetNum��M (13)�M (13)���CapItem�authRRPID��M (14)�M���CapResItem�authRRPID��M (14)�M���CapRevOrCredReqItem�authRRPID��M (14)�M���CapRevOrCredResItem�authRRPID��M (14)�M���TransactionDetail�authRRPID��O�O���Results�authStatus�M�M����PI�authToken��M�M���AuthResBaggage�authToken��M�M���AuthRevResBaggage�authTokenNew��M�M���AuthTokenData�authTokenOpaque���O���ResponseData�authValCodes��M�M���MarketAutoCap�autoRateInfo��O (10)�O���AutoCharges�autoTowingCharges��O (10)�O���AuthReqPayload�avsData��O (13)�O (13)���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��ResponseData�avsResult��O (13)�O (13)���ErrorMsg�badWrapper�M�M�M�M��BatchAdminReqData�baRqExtensions��O�M (1)���BatchAdminResData�baRsExtensions��M (1)�O���BatchAdminResData�baStatus��M�M���BatchStatus�batchExtensions��M (1)�M (1)���CapResPayload�batchID��O�O���CapRevOrCredResPayload�batchID��O�O���BatchAdminReqData�batchID��O�O���SaleDetail�batchID��O�O���BatchAdminReqData�batchOperation��M�M���CapResPayload�batchSequenceNum��O�O���CapRevOrCredResPayload�batchSequenceNum��O�O���SaleDetail�batchSequenceNum��O�O���AuthHeader�batchStatus��O�O���BatchAdminReqData�batchStatus��O�O���BatchAdminResData�batchStatus��O�O���CapResData�batchStatusSeq��O�O���CapRevOrCredResData�batchStatusSeq��O�O���BatchTotals�batchTotalExtensions��M (1)�M (1)���BrandAndBIN�bin��M�M���DirectoryString�bmpString�M�M�M�M��SETString�bmpString�M�M�M�M��BatchDetails�brandBatchDetailsSeq��O�O���CardCInitResTBS�brandCRLIdentifier�M���M��Me-AqCInitResTBS�brandCRLIdentifier��M�M�M��RegFormTBS�brandCRLIdentifier�M���M��PInitResData�brandCRLIdentifier�M�M����PResData�brandCRLIdentifier�M�M����AuthResData�brandCRLIdentifier��M�M���CapResData�brandCRLIdentifier��M�M���AuthRevResData�brandCRLIdentifier��M�M���CapRevOrCredResData�brandCRLIdentifier��M�M���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��PCertResTBS�brandCRLIdentifierSeq��M�M���Thumbs�brandCRLIdThumbs�M (4,5)�M (4,5)�M (4,5)�M (4,5)��ReturnTransactionDetail�brandID��O�M���BatchAdminReqData�brandIDSeq��O�O���CA-Msg�brandLogoURL�M���M (8)��RegTemplate�brandLogoURL�M�M�M�M��HotelCharges�businessCenterCharges��O (10)�O���BasicConstraintsSyntax�cA�M�M�M�M��CertReqData�caBackKeyData�M���M (8)��RegFormTBS�caeThumb�M���M��CertStatus�caMsg�M���M (8)��AuthResPayload�capResPayload��O�O���CapRevOrCredReqItem�capRevOrCredReqAmt��O�O���Results�capStatus�M�M����AuthResBaggage�capToken��M (14)�O���AuthRevReqBaggage�capToken��M (14)�O���AuthRevResBaggage�capTokenNew��M (14)�O���AuthReqData�captureNow��O�O (9)���CA-Msg�cardCurrency�M���M (8)��CA-Msg�cardholderMsg�M���M (8)��CA-Msg�cardLogoURL�M���M (8)��RegTemplate�cardLogoURL�M�M�M�M��AuthReqPayload�cardSuspect��O�M (13)���ResponseData�cardType��O�M���CertReqData�caTags2�M�M�M�M��SignedData�certificates�M�M�M�M��CertRes�certResTBS��M�M�M (7)��CertRes�certResTBSK�M���M (8)��Thumbs�certThumbs�M (4,5)�M (4,5)�M (4,5)�M (4,5)��CertResData�certThumbs�M (5)�M (5)�M (5)�M (5)��PCertResItemSeq�certThumb��M�M���MerTermIDs�chainNum��M�M���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��OIData�chall-M�M�M����CommercialCardData�chargeInfo��O (12)�O���AuthReqItem�checkDigests��M�M���Location�city�M�M�M�M��MerNames�city�O (15)�O (15)�O (15)�O (15)��BatchStatus�closedWhen��O�O���SaleDetail�commercialCardData��O (12)�O���Item�commodityCode��O (12)�O���ContentInfo�content�M�M�M�M��AutoRateInfo�corporateID��O (10)�O���MerNames�countryName�O (15)�O (15)�O (15)�O (15)��CapPayload�cPayExtensions��O�M (1)���Results�credStatus�M�M����UnsignedBrandCRLIdentifier�crlIdentifierSeq�M�M�M�M��CRLEntry�crlEntryExtensions�O�O�O�O��UnsignedCertificateRevocationList�crlExtensions�O (15)�O (15)�O (15)�O (15)��SignedData�crls�M�M�M�M��Thumbs�crlThumbs�M (4,5)�M (4,5)�M (4,5)�M (4,5)��CapReqData�cRqExtensions��O�M (1)���CapResData�cRsExtensions��M (1)�O���CapResPayload�cRsPayExtensions��M (1)�O���CapRevOrCredReqData�cRvRqExtensions��O�M (1)���CapRevOrCredReqItem�cRvRqItemExtensions��O�M (1)���CapRevOrCredResData�cRvRsExtensions��M (1)�O���CapRevOrCredResPayload�cRvRsPayExtensions��M (1)�O���AuthStatus�currConv��M�M���ChargeInfo�custDutyTariffRef��O (12)�O���SaleDetail�customerReferenceNumber��O (12)�O���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��SaleDetail�customerServicePhone��O (11)�M (13)���MarketHotelCap�customerServicePhone��O (11)�M (13)���HotelRateInfo�dailyTaxRate��O (10)�O���AutoCharges�deliveryCharges��O (10)�O���TripLeg�departureTax��O (10)�O���ATTRIBUTE�derivation�M�M�M�M��GeneralName�directoryName�M�M�M�M��Item�discountAmount��O (12)�O���Item�discountInd��O (12)�O���AutoRateInfo�distanceRate��O (10)�O���Name�distinguishedName�M�M�M�M��GeneralName�dNSName�O (15)�O (15)�O (15)�O (15)��MarketHotelCap�durationOfStay��O (10)�O���ChargeInfo�dutyTariffReference��O (12)�O���CertStatus�eeMessage�M���M (8)��CertReqData�eeThumb�O (4)�O (4)�O (4)�O (4)��CertReq�enc��M (6)�M (6)�M (7)��AuthRevRes�enc��M�M���CapToken�enc��M�O���AuthRes�encB��M�M���CapReq�encB��M�M���AuthRevRes�encB��M�M���CapRevReq�encB��M�M���CredReq�encB��M�M���CredRevReq�encB��M�M���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��AuthRes�encBX��M�M���CapReq�encBX��M�M���CapRevReq�encBX��M�M���CredReq�encBX��M�M���CredRevReq�encBX��M�M���EncryptedContentInfo�encryptedContent�O�M�M�M��CertReq�encx�M�M (6)�M (6)�M��CapToken�encX��M�O���ErrorTBS�errorOID�M�M�M�M��ErrorTBS�errorThumb�M�M�M�M��AutoCharges�extraDistanceCharges��O (10)�O���TripLeg�fareBasisCode��O (10)�O���RegField�fieldDesc�M�M�M�M��RegField�fieldId�M�M�M�M��RegField�fieldInvisible�M�M�M�M��RegField�fieldLen�M�M�M�M��RegField�fieldRequired�M�M�M�M��HotelCharges�folioCashAdvances��O (10)�O���MarketHotelCap�folioNumber��O (10)�O���HotelCharges�foodBeverageCharges��O (10)�O���AutoRateInfo�freeDistance��O (10)�O���AutoCharges�fuelCharges��O (10)�O���HotelCharges�giftShopPurchases��O (10)�O���AuthResData�peThumb��M�M���CapResData�peThumb��M�M���AuthRevResData�peThumb��M�M���CapRevOrCredResData�peThumb��M�M���HotelCharges�healthClubCharges��O (10)�O���MarketHotelCap�hotelRateInfo��O (10)�O���CertReqData�idData��M�M�M (7)��Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��InqReq�inqReqSigned�M�M����InqReq�inqReqUnsigned�O�M����InqReqData�inqRqExtensions�O�M (1)����PIHead�installRecurData�M��M���AuthReqPayload�installRecurData��O�M���AuthTokenData�installRecurData���M���HODInput�installRecurData�O�O�O���InstallRecurInd�installTotalTrans�M�O�M���AutoCharges�insuranceCharges��O (10)�O���MarketAutoCap�insuranceType��O (10)�O���InstallRecurData�irExtensions�O�O�M (1)���CommercialCardData�itemSeq��O (12)�O���MerNames�language�M�M�M�M��AutoCharges�lateReturnCharges��O (10)�O���AutoRateInfo�lateReturnHourlyRate��O (10)�O���HotelCharges�laundryCharges��O (10)�O���CA-Tags�localID-CA�M (2)�M (2)�M (2)�M (2)��MessageIDs�localID-C�O�M (2)�M (2)�M (2)��MessageIDs�localID-M�M (2)�O�M (2)�M (2)��TransIDs�localID-M�M (2)�O�M (2)�M (2)��PInitReq�localID-M�M (2)�O����Item�localTaxAmount��O (12)�O���Location�locationID�M�M�M�M��ResponseData�logRefID��M�M���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��AuthValCodes�marketSpec��O�O���MarketSpecSaleData�marketSpecCapData��O (10)�O���AuthReqPayload�marketSpecAuthData��O (10)�O���MarketSpecSaleData�marketSpecDataID��O (10)�O���SaleDetail�marketSpecSaleData��O (10)�O���MerchantDataSyntax�merAuthFlag��M�M�M��CommercialCardData�merchantLocation��O (12)�O���ChargeInfo�merchantTaxID��O (12)�O���MerchData�merchCatCode��M�M���MerchData�merchGroup��M�M���ChargeInfo�merDutyTariffRef��O (12)�O���SaleDetail�merOrderNum��O (11)�M���ChargeInfo�merType��O (12)�O���ErrorMsg�messageHeader�M�M�M�M��MessageHeader�messageIDs�M�M�M�M��HotelCharges�miniBarCharges��O (10)�O���HotelCharges�movieCharges��O (10)�O���AuthReqData�mThumbs��O (4)�O (4)���CapReqData�mThumbs��O (4)�O (4)���AuthRevReqData�mThumbs��O (4)�O (4)���CapRevOrCredReqData�mThumbs��O (4)�O (4)���PCertReqData�mThumbs��O (4)�O (4)���MessageWrapper�mwextension�M (1)�M (1)�M (1)�M (1)��MerNames�name��M�M�M��Item�nationalTaxAmount��O (12)�O���Item�nationalTaxRate��O (12)�O���Item�nationalTaxType��O (12)�O���Item�netCost��O (12)�O���CapRevOrCredReqItem�newBatchID��O�O���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��CertStatus�nonce-CCA�M���M (8)��MarketAutoCap�autoNoShow��O (10)�O���MarketHotelCap�hotelNoShow��O (10)�O���PrivateKeyUsagePeriod�notAfter�O (15)�O (15)�O (15)�M��PrivateKeyUsagePeriod�notBefore�O (15)�O (15)�O (15)�M��CapToken�null��M�O���HODInput�odExtensions�O�O�O���OIData�odExtOIDs�O�M (1)����OIData�oiExtensions�O�M (1)����SaleDetail�okToPrintPhoneInd��O (11)�M (13)���AutoCharges�oneWayDropOffCharges��O (10)�O���SaleDetail�orderSummary��O (11)�M (13)���AutoCharges�otherCharges��O (10)�O���HotelCharges�otherCharges��O (10)�O���Item�otherTaxAmount��O (12)�O���AcctInfo�panData0�M���M (8)��AlgorithmIdentifier�parameters�M�M�M�M��AutoCharges�parkingCharges��O (10)�O���HotelCharges�parkingCharges��O (10)�O���BasicConstraintsSyntax�pathLenConstraint�M�M�M�M��SaleDetail�payRecurInd��O (13)�M (13)���TransIDs�paySysID�M (2)�M (2)�M (2)�M (2)��PCertReqData�pcRqExtensions��O�M (1)���PCertResTBS�pcRsExtensions��M (1)�O���PI�piDualSigned�M�M�M���PIHead�piExtensions�O��M (1)���PInitReq�piRqExtensions�O�M (1)����PInitResData�piRsExtensions�M (1)�M (1)����Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��PI�piUnsigned�O�M�M���SETQualifier�policyDigest�O (15)�O (15)�O (15)�O (15)��SETQualifier�policyEmail�O (15)�O (15)�O (15)�O (15)��AdditionalPolicy�policyOID�O (15)�O (15)�O (15)�O (15)��AdditionalPolicy�policyQualifier�O (15)�O (15)�O (15)�O (15)��PolicyInformation�policyQualifiers�O (15)�O (15)�O (15)�O (15)��SETQualifier�policyURL�O (15)�O (15)�O (15)�O (15)��Location�postalCode�M�M�M�M��MerNames�postalCode�O�O�O�O��HotelCharges�prepaidExpenses��O (10)�O���PReq�pReqDualSigned�M�M����PReq�pReqUnsigned�O�M����MarketHotelAuth�prestige��O (10)�O���DirectoryString�printableString�M�M�M�M��Item�productCode��O (12)�O���MarketHotelCap�programCode��O (10)�O���MarketHotelCap�propertyPhone��O (10)�O���PResPayload�pRsExtensions��M (1)�O���PublicKeySorE�publicKeyE��M�M�M (7)��PublicKeySorE�publicKeyS�M�M�M�M��PolicyQualifierInfo�qualifier�O (15)�O (15)�O (15)�O (15)��Item�quantity��O (12)�O���ReferralData�reason�M�M�M�M��InstallRecurInd�recurring�M�O�M���AuthTokenData�recurringCount���M���MarketAutoCap�referenceNumber��O (10)�O���ReferralData�referralURLSeq�M�M�M�M��GeneralName�registeredID�O (15)�O (15)�O (15)�O (15)��TransactionDetail�reimbursementID��O�O���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��MarketAutoCap�rentalAgreementNumber��O (10)�O���MarketAutoCap�rentalLocation��O (10)�O���MarketAutoCap�renterName��O (10)�O���ResponseData�respReason��M�M���MarketTransportCap�restrictions��O (10)�O���PResPayload�results��M�M���BatchAdminReqData�returnBatchSummaryInd��O�O���MarketAutoCap�returnLocation��O (10)�O���BatchAdminReqData�returnTransactionDetail��O�O���UnsignedCertificateRevocationList�revokedCertificates�M�M�M�M��HotelCharges�roomServiceCharges��O (10)�O���HotelCharges�roomTax��O (10)�O���MessageHeader�rrpid�M�M�M�M��AuthReqData�saleDetail��O (10)�M���CapPayload�saleDetail��O (10)�M���SaleDetail�saleExtensions��O�M (1)���BatchAdminResData�settlementInfo��O�O���CommercialCardData�shipFrom��O (12)�O���CommercialCardData�shipTo��O (12)�O���Error�signedError�M (3)�M (3)�M (3)�M (3)��AuthReqPayload�specialProcessing��O (13)�O (13)���Location�stateProvince�M�M�M�M��MerNames�stateProvince�M�M�M�M��MerTermIDs�storeNum��M�M���AVSData�streetAddress��O (13)�O (13)���AuthReqPayload�subsequentAuthInd��M�M���ChargeInfo�summaryCommodityCode��O (12)�O���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��AutoCharges�telephoneCharges��O (10)�O���HotelCharges�telephoneCharges��O (10)�O���MerTermIDs�terminalID��M�M���SETQualifier�terseStatement�O (15)�O (15)�O (15)�O (15)��CardCInitReq�thumbs�O (4)���O (4)��CardCInitResTBS�thumbs�M (5)���M (5)��Me-AqCInitReq�thumbs��O (4)�O (4)�O (4)��Me-AqCInitResTBS�thumbs��M (5)�M (5)�M (5)��RegFormData�thumbs�O (4)���O (4)��RegFormTBS�thumbs�M (5)���M (5)��CertReqData�thumbs�O (4)�O (4)�O (4)�O (4)��CertResData�thumbs�M (5)�M (5)�M (5)�M (5)��PInitReq�thumbs�O (4)�O (4)����PInitResData�thumbs�M (5)�M (5)����MarketTransportCap�ticketNumber��O (10)�O���CapTokenData�tokenOpaque���O���AutoCharges�totalDistance��O (10)�O���ChargeInfo�totaldutyTariffAmount��O (12)�O���ChargeInfo�totalfreightShippingAmount��O (12)�O���ChargeInfo�totalLocalTaxAmount��O (12)�O���ChargeInfo�totalNationalTaxAmount��O (12)�O���ChargeInfo�totalOtherTaxAmount��O (12)�O���AutoCharges�totalTaxAmount��O (10)�O���HotelCharges�totalTaxAmount��O (10)�O���ChargeInfo�totalTaxAmount��O (12)�O���TransactionDetail�transactionStatus��O�O���BatchAdminReqData�transDetails��O�O���BatchAdminResData�transDetails��O�O���TransactionDetail�transExtensions��O�O����������BatchAdminResData�transmissionStatus��O�O���Continued on next page

��styleref "Map Title"�Support Requirements�, continued

�styleref "Block Label"�Field Support Summary� (continued)���

Message/Data Structure�Field/Option�Cardholder�Merchant�Payment �Gateway�CA��MarketTransportCap�travelAgencyCode��O (10)�O���MarketTransportCap�travelAgencyName��O (10)�O���MarketTransportCap�tripLegs��O (10)�O���TunnelingSyntax�tunneling�M�M�M�M��ATTRIBUTE�Type�M�M�M�M��GeneralName�uniformResourceIdentifier�O (15)�O (15)�O (15)�M��Item�unitCost��O (12)�O���Item�unitOfMeasureCode��O (12)�O���Error�unsignedError�M�M�M�O��AuthValCodes�validationCode��O (13)�O (13)���AutoRateInfo�vehicleClassCode��O (10)�O���AutoCharges�violationsCharges��O (10)�O���SETString�visibleString�M�M�M�M��MessageIDs�xID�M�M�M�M��

�Appendix F�Logo Display During Certificate Registration

Overview

Optional logos�The certificate registration process includes optional logos for the brand and the financial institution.

To promote SET’s interoperability, it is suggested that all implementations support at least the GIF format for logos.

For URLs referencing textual information (for example, policy, instructions), the URL should be constrained to be in the natural-language character set so that it can be directly displayed to the cardholder.

Subsequent versions of the SET specification may be moving towards supporting a broader range of formats over time as business needs and technologies evolve.��

Contents�This appendix includes the following information: ��

Logo specifications�Explains standard logo sizes, the color palette, and how to specify and display a logo.��Sample logos�Provides examples of the five standard logo sizes.��

�Logo Specifications

Logo sizes�Five standard sizes for logos have been defined. The sizes in pixels and the corresponding file names are given in the following table:��

Size in pixels�Name�File name��32 x 32 or 32 x 20�Extra Small�exsmall.gif��53 x 33�Small�small.gif��103 x 65�Medium�medium.gif��180 x 114�Large�large.gif��263 x 166�Extra Large�exlarge.gif��Table � SEQ Table * ARABIC �77�: Logo Sizes

�To maintain a constant ratio, designers of an extra small logo may choose to limit the size to 32 x 20 pixels. Sample logos of these sizes appear on the following page.��

Color palette�The color palette of the logos needs to be designed to work within the limited palette of colors typically used by most browsers within an 8-bit or 256-color environment or greater (the “Netscape palette”).��

Specifying a logo�Each logo URL specified with the registration form will either be:

The name of a directory (ending with a virgule “/”) that contains one or more logos named according to the table above; at least one of the following files must appear in the directory: small.gif, medium.gif, ��or

The name of a file containing a Small or Medium logo; the name may be different than those shown in the table; however, if one of these names is used, the size of the icon and the file name must be consistent with those shown in the table.��

Displaying a logo�Applications that display logos on the registration form must reserve space for both brand and financial institution logos; at a minimum, the registration form must be able to support Small or Medium logos. The ability to display logos of larger sizes is at the discretion of the software vendor.

Note: Extra Small logos will never be displayed on a registration form.��

�Sample Logos

exsmall.gif��EMBED Paint.Picture����The Extra Small logo is the same size as a Windows icon. Unlike the other logos, it is square. To account for this difference, the sample icon shown here has the logo sized to 32 x 20 pixels, with the portion beneath the logo shaded gray. This size logo is only used by brands.��

small.gif��EMBED Paint.Picture����This is a sample Small logo.��

medium.gif��EMBED Paint.Picture����This is a sample Medium logo.��

large.gif��EMBED Paint.Picture����This is a sample Large logo.��

exlarge.gif��EMBED Paint.Picture����This is a sample Extra Large logo.��

�Appendix G�Object Identifiers

Introduction

Purpose�Object identifiers are used in SET to uniquely identify a particular type of object. Several of the object identifiers are standard values used throughout the industry for identifying the type of cryptographic functions being used to encapsulate a message. Other object identifiers are standard values used to uniquely an extension in a certificate. SET defines several new object identifiers..��

Organization�This appendix summarizes the types of object identifiers used by SET into the following classes:

Algorithm

Content

Extension

Attribute

ASN.1

External��

OID as SET field values�The following table summaries the fields that are defined solely for the purpose of exchanging an object identifier as its value within a SET message, exclusive of the PKCS message formatting.��

Field�Usage��ErrorOID�Identify the specific object (extension, content type, attribute, etc) that caused the error condition��FieldID�Identify the specific field during certificate registration��PolicyOID�Identify the specific brand certificate policy qualifier��

�Algorithm

Algorithm OIDs�The following table lists the object identifiers used to uniquely identify the cryptographic operator being applied to a SET message (or data structure within a message). There are no algorithm OIDs defined specifically for SET.��

�Object Identifier�Usage���rsaOAEPEncryptionSET�Public key encryption RSA with OAEP for SET���id-rsaEncryption�Public key encryption using RSA���id-sha1-with-rsa-signature�Digital signature using SHA-1 as digest function���id-sha1�Digest function using SHA-1���id-desCBC�Symmetric key encryption using DES with CBC mode���id-desCDMF�Symmetric key encryption using CDMF��

�Content

Content OIDs�The following table lists the object identifiers used to uniquely identify the general class for the content types used in a SET message (or data structure within a message). The OIDs defined under {id-set-content} are used to further refine the specific content type of SET message or data structure. A summary of the SET related content type extensions is provided in “� REF Appx_Content_Types * MERGEFORMAT �ContentTypes�” on page � PAGEREF Appx_Content_Types �512�.��

�Object Identifer�Usage���data�PKCS data content���signedData�PKCS signed data content���envelopedData�PKCS enveloped data content���digestedData�PKCS digested data content���encryptedData�PKCS encrypted data content���messageDigest�PKCS message digest content���contentType�PKCS content type��

�Extension

Extension OIDs�The following table lists the object identifiers used to uniquely identify the general class for the certificate extensions used in a SET message (or data structure within a message). Each of the OIDs in this table are defined relative to {id-ce}. OIDs under {id-set-cert} are defined as private extensions specific for SET. In addition, a SET message and data structure extension mechanism is provided under {id-set-msgExt} to facilitate supporting payment card brand and nation business requirements. A summary of the SET message and data structures is provided in “� REF Appx_OIDs_under_idset * MERGEFORMAT �Object Identifiers under {id-set}�” on page � PAGEREF Appx_OIDs_under_idset �499�.��

�Object Identifer�Usage���id-ce-subjectKeyIdentifier�X.509 certificate subject key identifier���id-ce-keyUsage�X.509 certificate key usage���id-ce-privateKeyUsagePeriod�X.509 certificate private key usage period���id-ce-subjectAltName�X.509 certificate subject alternate name���id-ce-issuerAltName�X.509 certificate issuer alternate name���id-ce-basicConstraints�X.509 certificate basic constraints���id-ce-cRLNumber�X.509 certificate revocation list number���id-ce-certificatePolicies�X.509 certificate policies���id-ce-authorityKeyIdentifier�X.509 certificate authority key identifier���id-set-hashedRootKey�X.509 SET hash of next generation root key���id-set-certificateType�X.509 SET certificate type���id-set-merchantData�X.509 SET Merchant identification���id-set-cardCertRequired�X.509 SET Cardholder certificate required���id-set-tunneling�X.509 SET Acquirer -to-Cardholder tunneling message���id-set-setExtensions�X.509 SET message extensions support���id-set-setQualifier�X.509 SET policy qualifier��

�Attribute

Attribute OIDs�The following table lists the object identifiers used to uniquely identify the general class for the attribute types used in a SET message (or data structure within a message).��

�Object Identifer�Usage���id-set-attribute-cert�SET certificate���id-set-rootKeyThumb�SET root certificate thumbprint���id-set-additionalPolicy�SET additional policy���id-at-commonName�X.509 relative distinguished common name ���id-at-countryName�X.509 relative distinguished country name���id-at-organizationName�X.509 relative distinguished organizational name���id-at-organizationalUnitName�X.509 relative distinguished origanizational unit name��

�ASN.1

ASN.1 OIDs�The following table lists the object identifiers used to uniquely identify each of the ASN.1 modules for SET under the {id-set-module}. These OIDs are for informational purposes.��

�Object Identifer�Usage���SetMessage�SET common types���SetCertMsgs�SET certificate message types���SetPayMsgs�SET payment message types���SetCertificate�SET CRL and X.509 certificate support types���SetCertificateExtensions�SET X.509 certificate extension support types���SetCRL�SET CRL support types���SetPKCS7Plus�SET PKCS #7 support types���SetAttribute�SET attribute support types���SetMarketData�SET market-specific data support types���SetPKCS10�SET PKCS #10 support types��

�External

External OIDs �The following table lists the object identifiers used to uniquely identify the higher-level OIDs referenced by SET and previously established by other organizations.��

�Object Identifer�Usage���secsig�Security functions���pkcs-1�PKCS-1���pkcs-7�PKCS-7���pkcs-9�PKCS-9���ds�Directory service���id-at�Distinguished name class��

�Appendix H�Extension Mechanism for SET Messages

Overview

Explanation�The scope of SET for Version 1 was intentionally limited to the minimum functionality necessary to support cardholders and merchants doing business on the Internet. Consequently, some business functions are not included in the definition of SET payment messages.

Furthermore, it is unlikely that SET could ever be robust enough to cover the business practices of every national market and every Acquirer. Therefore, it is necessary to provide a mechanism to extend SET payment messages.

An example of a business function that is not supported by the SET messages is Japanese payment options. Issuers in Japan have options for payment that are selected by the consumer at the time of the purchase. Since there is no place in the SET message to carry this information, an extension to the protocol is necessary.��

Mechanism�The mechanism used to extend SET messages parallels the way that X.509 certificates are extended.��

Impacted data structures�The data structures listed below have an extensions field.

Note: The extensions field is always the last item in a data structure.��

MessageWrapper

PInitReq

PInitResData

PIHead

InstallRecurData

OIData

HODInput

PResPayload

InqReqData

AuthReqPayload

SaleDetail

AuthResPayload

AuthRevReqData

AuthRevResData�CapReqData

CapPayload

CapResData

CapResPayload

CapRevOrCredReqData

CapRevOrCredReqItem

CapRevOrCredResData

CapRevOrCredResPayload�PCertReqData

PCertResTBS

BatchAdminReqData

BatchAdminResData

BatchStatus

BatchTotals

TransactionDetail��

�Extension Components

Contents of an extension�An extension will consist of three components:��

object identifier�Must uniquely identify the extension. This identification will permit SET applications to recognize an extension and process the data contained within it��criticality flag�Indicates whether the recipient shall understand the extension to process the message containing the extension.��data�Provides the additional business information that necessitated the definition of the extension. The layout of the data (that is, the ASN.1 code) will be defined by the organization creating the extension��

Criticality flag�The criticality flag is a boolean value. An extension is considered critical if this value is TRUE; otherwise, the extension is considered non-critical.

Note: The default value is FALSE.

When an extension is critical, recipients of the message must recognize and be able to process the extension.

When an extension is non-critical, recipients that cannot process the extension can safely ignore the data in the.��

Information object sets�An information object set has been created for each data structure that can contain an extension. These sets define the extensions that are permitted to be processed in the data structure. Each of these sets ends with an ASN.1 extension marker (“...”). The extension marker indicates that additional extensions may be defined that the application does not recognize.

Application developers who support specific extensions should add the list of supported extensions after the extension marker.

Note: A comma should separate the extension marker from the information objects that follow.��

�Minimum Extension Support

Minimum implementation requirements�SET applications will fit into one of two categories:

the application does not support any message extensions, or

the application supports some selected set of message extensions.

An application that does not support any message extensions shall recognize the presence of an extension in a message and examine the criticality flag. If the extension is critical, the application must not process the message and shall reject it with an error code of unrecognizedExtension. If the extension is non-critical, the application can safely ignore the data in the extension and proceed to process the remainder of the message.

An application that supports message extensions shall recognize the presence of an extension in a message and process the extension as follows:

If the application supports the object identifier for this message, the data within the extension is processed.

If the application does not support the object identifier for this message and the extension is critical, the application shall not process the message and shall reject it with an error code of unrecognizedExtension.

If the application does not support the object identifier for this message and the extension is non-critical, the application can safely ignore the data in the extension and proceed to process the remainder of the message.��

�Defining Extensions

Requirements for defining an extension�Organizations defining an extension shall register the object identifier and the data content of the extension with MasterCard and Visa (or their designee) prior to deploying software that transmits messages (including test messages) over an open network. The data in the extension shall conform to the requirements described below.

Data fields that are defined to appear within the data block (DB) of the OAEP block shall never appear within the data of any extension. Note: While it is never appropriate to put the PAN into the definition of an extension, it is permissible to put the first six digits of the PAN, the Bank Identification Number (BIN), into the data of an extension.

No fields may be added to the DB of the OAEP block and no new values may be defined for the block contents byte (BC).

Data that is always encrypted by the protocol shall not appear in an unencrypted form in an extension.��

Unencrypted extensions�Financial information must be protected. For example, transaction amounts are always encrypted and shall not appear unencrypted in an extension.

The following data structures contain extensions that are not encrypted:

MessageWrapper

PInitReq

PInitResData

OIData

PResPayload

InqReqData

PCertReqData

PCertResTBS��

Approval of extensions�MasterCard and Visa will be the final arbiters of whether a given data element may appear in its unencrypted form within a message.

MasterCard and Visa reserve the right to disapprove the use of any extension that contains data that may compromise the integrity of the SET protocol. For example, any extension that contains more than six digits of the PAN will not be approved for use in a SET message.��Continued on next page

��styleref "Map Title"�Defining Extensions�, continued

Export and import approval�Software vendors are responsible for obtaining export and import approval for any data added to a SET message (using extensions) by their application.

Organizations defining an extension should consider export and import requirements when defining the data that appears within an extension. The guidelines that appear later in this section provide suggestions on the content of extensions; these suggestions take export and import requirements into account.��

Example�Under Martian law, a merchant on the planet Mars must send the shipment weight for orders being shipped off-planet to the Acquirer, who must authorize the shipment with the Martian Shipping Authority. To support this additional data, Martian software developers might get together and define an extension.��

Defining the extension�The definition of the extension consists of the three components: object identifier (id-mars-data), criticality flag (TRUE), and syntax for the data (MarsData).

marsData EXTENSION ::= {

 SYNTAX MarsData

 CRITICAL TRUE

 IDENTIFIED BY id-mars-data

}

The symbol marsData is an ASN.1 identifier that is the name of the extension. The symbol MarsData, which is an ASN.1 type reference that provides the data layout, is described below.��

Identifying the extension�The object identifier, id-mars-data, is a series of integer numbers. Each number in the series provides a more specific designation.

id-mars-data OBJECT IDENTIFIER ::=

 {uso(3) member-planet(0) mars(4) set-def(12) marsData(0)}

The first value designates the fictitious “Universal Standards Organization” (USO).

The second value designates that what follows is assigned to a member planet of the USO.

The third value designates the fourth planet, Mars.

The fourth value designates data defined for use within SET by Mars.

The fifth value designates the marsData extension.��

Specifying the criticality�The Martian software developers have determined that their extension is critical. In other words, if the payment gateway does not understand and therefore cannot process the data within the extension, the message should be rejected.��Continued on next page

��styleref "Map Title"�Defining Extensions�, continued

Defining the data syntax�The Martian software developers have defined the data syntax for the marsData extension as follows:

MarsData ::= SEQUENCE {

 offPlanet BOOLEAN,

 shippingInfo MarsShippingInfo OPTIONAL

}

MarsShippingInfo ::= SEQUENCE {

 weight INTEGER, -- Weight in kilograms

 planet INTEGER, -- Destination using USO-3166

 -- planetary codes

 shipperID OBJECT IDENTIFIER OPTIONAL

}��

Updating the information object sets�The Martian software developers have determined that the marsData extension can appear in the authorization request and the capture request. This results in the following information object set definitions:

ARqExtensionsIOS EXTENSION ::= {

 ... ,

 marsData

}

CPayExtensionsIOS EXTENSION ::= {

 ... ,

 marsData

}

Note that locally-defined extensions appear after the extension marker “...” and are separated from it by a comma.��Continued on next page

��styleref "Map Title"�Defining Extensions�, continued

ASN.1 extension marker “...”�The inclusion of the marsData extension in the information object sets for the authorization and capture requests indicates that the extension is only intended to appear in those data structures. However, since all of the information object sets defined in the specification contain the ASN.1 extension marker “...”, the marsData extension could in fact appear in any data structure. Nonetheless, adding the extension to the information object sets makes the intent clear.

The marker allows each SET application to understand different sets of objects and still interoperate. The marker indicates that each application should expect to decode objects that it does not understand. After decoding an object, such as marsData, the application must decide how to proceed.

Once an extension is decoded, the application determines whether or not it recognizes the object. If processing a capture request, it must determine if the object identifier is in the definition of CPayExtensionsIOS. If the application recognizes the object, normal processing continues.

If the application does not recognize the object and the criticality flag is TRUE, then the application shall not process the message and shall reject it with an error code of unrecognizedExtension. Otherwise, the information in the extension is ignored and normal processing of the message continues.��

�Appendix K�Object Identifiers under {id-set}

Introduction

Explanation�ISO and ITU-T have recently adopted ISO/IEC 9834-7 and ITU-T X.666, which provides for an international registration authority (RA). The arc for this RA is {joint-iso-itu-t (2) internationalRA (23)}.

MasterCard and Visa will apply for an object identifier for use by SET applications under this arc as soon as the registration authority is named. The ultimate definition of {id-set} will be of the form:

 id-set OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 internationalRA(23) set(42)}

��

Organization�This appendix addresses the following topics:

OID Usage

OID Management��

�OID Usage

Arc division�The {id-set} arc has been divided as follows with usage of these values described in � REF _Ref389610863 * MERGEFORMAT �Table 78� on page � PAGEREF _Ref389610883 �501�.��

0�content type��1�message extension��2�field��3�attribute��4�algorithm��5�policy��6�module��7�certificate extension��8�brand��9�vendor��10�national market��Continued on next page

��styleref "Map Title"�OID Usage�, continued

�styleref "Block Label"�Arc division� (continued)���

Symbol�Value�Used to Identify��content type�{id-set contentType (0)}�Data elements that are globally defined for use by SET applications��message extension�{id-set msgExt (1)}�Message extensions that are globally defined for use by SET applications��field�{id-set field (2)}�Registration form fields that are globally defined for use by SET applications��attribute�{id-set attribute (3)}�Attributes that are globally defined for use by SET applications��algorithm�{id-set algorithm (4)}�Algorithms that are globally defined for use by SET applications (a)��policy�{id-set policy (5)}�Policies that are globally defined for use by SET applications��module�{id-set module (6)}�SET ASN.1 modules��certificate extension�{id-set certExt (7)}�Certificate extensions that are globally defined for use by SET applications��brand�{id-set brand (8)}�Payment card brands(b)��vendor�{id-set vendor (9)}�SET application vendors(c)��national market�{id-set national (10)}�National market information(d)��Table � SEQ Table * ARABIC �78�: Arc Division for {id-set} OID

(a)	All algorithms currently used by SET have externally defined object identifiers.

(b)	Each payment card brand manages the assignment of OIDs beneath its brand OID. It is strongly recommended that the next level under the brand OID follow the conventions described below under Private OID management.��The assignment of OID values is roughly based on the values assigned to the brand by ISO using the shortest BIN prefix that is uniquely assigned to the brand.

(c)	Each vendor manages the assignment of OIDs beneath its vendor OID. It is strongly recommended that the next level under the vendor OID follow the conventions described below under Private OID management.��The assignment of vendor OID values is made on a first come-first served basis.

(d)	Each national market manages the assignment of OIDs beneath its national market OID. It is strongly recommended that the next level under the national market OID follow the conventions described below under Private OID management.��The assignment of national market OID values corresponds to ISO-3166 numeric codes.

�OID Management

Private OID management�Each payment brand, vendor and national market manages its own arc. However it is strongly recommended that the next level in that arc follow the same conventions as followed by the {id-set} arc:��

0�content type��1�message extension��2�field��3�attribute��4�algorithm��5�policy��6�module��

Private OID restrictions�Private OID extensions may be defined for use in the appropriate extension fields of a SET message. Furthermore, no brand, vendor, or national market is permitted to define new certificate extensions for use within SET.��

Obtaining an OID�The current Registration Authority for {id-set} is Tony Lewis. To request that an OID be assigned under any of the arcs for {id-set}, send an e-mail message to tlewis@visa.com with the following information:

Contact name, electronic mail address, telephone and facsimile numbers

Organization’s name and address

Usage of OID (for example, company identification, algorithm identification, policy identification, etc.)

Plans for assignment of OIDs under the requested arc (for example, if the OID is to identify a company, whether lower-level OIDs will be created to identify fields, policies, etc.)��

�Appendix L�Object Identifiers for Registration Form Fields

Introduction

Explanation�An object identifier under {id-set} has been assigned to provide an arc for the data content associated with registration form fields. The definition of this identifier is:

id-set-field OBJECT IDENTIFIER ::= {id-set 23}

��

Organization�This appendix addresses the following topics:

application usage

field types��

�Application Usage

Options�An application can take the following optional behaviors, which are described in more detail below:

constrain the data in the field (such as limiting the characters to those that can be entered for the type of field);

retain the information in a database (such as the cardholder wallet) for use on future registration attempts;

pre-fill the information on the registration form based on responses provided by the user during prior registrations.��

Constraints on the data in the field�If the application recognizes the object identifier for a registration form field, it can constrain the user’s input. For example, it can warn the user when the field contains characters that it believes to be invalid for the field—such as a field for telephone numbers limited to numbers, spaces, hyphens, and parentheses.

The user should always be allowed to submit the registration form, even if the application detects what it believes to be an input error. This capability is necessary because the application’s edits might otherwise prevent a valid registration form from being submitted. For example, if the application limits names to alphabetic characters, then users whose names are represented using Chinese characters would not be able to submit registration forms.��Continued on next page

��styleref "Map Title"�Application Usage�, continued

Retain the information�An application may choose to retain the information from the registration form in a database (such as the cardholder wallet) for use on future registration attempts. All of the information in a registration form shall be considered sensitive and protected with at least the same level of protection as the private keys and account information stored in the database.

The application shall provide the user with the ability to:

prevent this information from being written to the database, and

purge this information from the database.

The application can store information even for unrecognized object identifiers. For example, an application that does not recognize the specific object identifiers for home address and billing address can still store the information using the object identifier as the key for retrieval.

Some information, such as the last payment amount, will age quickly and may be of no practical use to the user even if the application retains it.��

Pre-fill the information�The application can pre-fill the fields in the registration form when it recognizes the object identifier and can retrieve the appropriate information. For example, if the cardholder has customized their wallet with name and address information, the application can pre-fill these fields.

The application can also retrieve information for prior registration requests, even if it is not otherwise able to process the field. For example, an application may not know the format of a passport number for a given country, but it can still pre-fill the information if it has processed the same object identifier in a prior registration form.

The application may be able to retrieve information from another application. For example, the last payment amount may be available from a personal finance program.��

�Field Types

Types of fields�The following types of fields, each represented as {id�set�field number}, have been identified: ��

0�full name��1�given name (or first name)��2�family name (or surname or last name)��3�family name at birth (or maiden name)��4�place name��5�identification number��6�month��7�date��8�address��9�telephone��10�amount��11�account number��12�pass phrase��

�� REF _Ref389611092 * MERGEFORMAT �Table 79� on page 510 shows the types of fields, and for each the OID, a description, and additional qualifiers. If used, the qualifiers must appear sequentially in the same order as they appear in the table (where they are separated by a rule). Use of one or more qualifiers is optional, but each qualifier, if included, must be in the specified sequence. Skipping one additional qualifier and including the rest is not permitted.

Note: Additional types of fields and qualifiers may be added to this list at any time.��Continued on next page

��styleref "Map Title"�Field Types�, continued

Field Type/OID�Description�Additional Qualifiers��full name�{id-set field fullName (0)}�Indicates a field that contains a person’s given name and family name�0 primary cardholder�1 secondary cardholder(a)��given name (or first name)�{id-set-field givenName (1)}�Indicates a field that contains a person’s given name�0 primary cardholder�1 secondary cardholder(a)��family name (or surname or last name)�{id-set-field familyName (2)}�Indicates a field that contains an individual’s family name�0 primary cardholder�1 secondary cardholder(a)��family name at birth (or maiden name)�{id-set-field birthFamilyName (3)}�Indicates a field that contains an individual’s family name at birth (for example, maiden name)�0 primary cardholder�1 secondary cardholder(a)��place name�{id-set-field placeName (4)}�Indicates a field that contains the name of a place�To identify the specifics of the place: �0 birth

To indicate a place of significance to an individual: (a)�0 primary cardholder�1 secondary cardholder��identification number�{id-set-field identificationNumber (5)}�Indicates a field that contains an identification number assigned to an individual.�To identify the type of identification:�0 passport�1 national identity�2 voter registration�3 driver license�4 business license

To indicate the nation from which the identification is expected to originate:�the ISO-3166 numeric country code.

To indicate a place of significance to an individual: (a)�0 primary cardholder�1 secondary cardholder��

(a)	A further qualification to indicate a relative of one of these individuals can be specified—see Relatives below.

Table � SEQ Table * ARABIC �79�: Field Types for {id-set-field}

Continued on next page

��styleref "Map Title"�Field Types�, continued

Field Type/OID�Description�Additional Qualifiers��month�{id-set-field Month (6)}�Indicates a field that contains a month of significance to an individual.�To indicate the significance of the month:�0 birth

To indicate a place of significance to an individual: (a)�0 primary cardholder�1 secondary cardholder��date�{id-set-field date (7)}�Indicates a field that contains a date of significance to an individual. �To indicate the significance of a date as follows:�0 birth�1 last payment�2 last transaction�3 account opened�4 PAN expiration

To indicate a data of significance to an individual: (a)�0 primary cardholder�1 secondary cardholder��address�{id-set-field address (8)}�Indicates a field that contains an address.�To indicate the type of address:�0 current home�1 current billing�2 current work�3 prior home�4 prior billing�5 prior work

To indicate the nation from which the address is expected to originate:�ISO-3166 country code��telephone�{id-set-field telephone (9)}�Indicates a field that contains a telephone number.�To indicate the type of number:�0 home�1 business��To indicate the nation from which the address is expected to originate:�ISO-3166 country code��

(a)	A further qualification to indicate a relative of one of these individuals can be specified—see Relatives below.

�styleref "Caption"�Table 79: Field Types for {id-set-field}�, continued

Continued on next page

��styleref "Map Title"�Field Types�, continued

Field Type/OID�Description�Additional Qualifiers��amount�{id-set-field amount (10)}�Indicates a field that contains an amount. �To indicate the type of amount:�0 last payment�1 last transaction�2 account balance�3 line of credit

To indicate the currency code:�the ISO-4217 currency code.��account number�{id-set-field amount (11)}�Indicates a field that contains an account number.�To indicate the type of account:�0 checking�1 savings�2 card verification code (b)��pass phrase�{id-set-field amount (12)}�Indicates a field that contains a pass phrase.(c)���

(b)	The card verification code is a number printed on the payment card; because this number is not embossed and does not appear on the magnetic stripe, it is only available to someone with physical access to the card.

(c)	Typically, this will be exchanged between the individual and the financial institution over a trusted medium of exchange.

�styleref "Caption"�Table 79: Field Types for {id-set-field}�, continued

�Field Qualifier

Relatives�The relatives of an individual can be specified by adding an additional qualifier to the end of an OID as follows:��

0�spouse��1�mother��2�father��3�maternal grandmother��4�maternal grandfather��5�paternal grandmother��6�paternal grandfather��

Hierarchical assignments�The object identifiers are assigned in a hierarchical manner with the information becoming more specific with each number in the series providing a more specific designation.��

Examples�The following are examples of object identifiers for various fields:���{id-set-field 0 1}�secondary cardholder’s full name���{id-set-field 3 0 1}�primary cardholder’s mother’s maiden name���{id-set-field 5 0 392 0}�primary cardholder’s Japanese passport number���{id-set-field 5 1 840 1}�secondary cardholder’s U.S. social security number���{id-set-field 9 1 840}�business telephone number in U.S. format: (800) 555-1212���{id-set-field 10 0}�amount of last payment���{id-set-field 10 0 826}�amount of line of credit specified in Pound Sterling (UK)��Continued on next page

��styleref "Map Title"�Field Qualifier�, continued

Primary cardholder’s mother’s maiden name�To clarify the usage of the relative qualifier in the hierarchical manner for identifying information, the assignment given for the primary cardholder’s mother’s maiden name example is defined as follows:

{id-set-field 3 0 1}� | | |� | | |� | | +--mother relative qualifier� | |� | |� | +--primary cardholder qualifier� |� |� +--family name at birth (or maiden name)

��

Primary cardholder’s Japanese passport number�To further elaborate on usage of multiple qualifiers for a field in the hierarchical manner for identifying information, the assignment given for the primary cardholder’s Japanese passport number example is defined as follows:

{id-set-field 5 0 392 0}� | | | |� | | | |� | | | +--primary cardholder qualifier� | | |� | | |� | | +--nation qualifier� | |� | |� | +--passport qualifier� |� |� +--identification number�

��

�Appendix M�ContentTypes

Introduction

Organization�This appendix includes tables that list SET messages (or data structures within messages), content, and contentType for:

SignedData

DigestedData

EnvelopedData��

�SignedData

SignedData�The following table shows the SET message (or data structure within a message), the content and the contentType for signed data.��

�Message /Data Structure�Content�Content Type���AcqCardMsg�AcqCardCodeMsg�id-set-content-AcqCardCodeMsg���AuthReq�AuthReqTBS�id-set-content-AuthReqTBS���AuthRes�AuthResTBS�id-set-content-AuthResTBS���AuthRes�AuthResTBSX�id-set-content-AuthResTBSX���AuthRevReq�AuthRevReqTBS�id-set-content-AuthRevReqTBS���AuthRevRes�AuthRevResData�id-set-content-AuthRevResData���AuthRevRes�AuthRevResTBS�id-set-content-AuthRevResTBS���AuthToken�AuthTokenTBS�id-set-content-AuthTokenTBS���BatchAdminReq�BatchAdminReqData�id-set-content-BatchAdminReqData���BatchAdminRes�BatchAdminResData�id-set-content-BatchAdminResData���CapReq�CapReqTBS�id-set-content-CapReqTBS���CapReq�CapReqTBSX�id-set-content-CapReqTBSX���CapRes�CapResData�id-set-content-CapResData���CapRevReq�CapRevReqTBS�id-set-content-CapRevReqTBS���CapRevReq�CapRevReqTBSX�id-set-content-CapRevReqTBSX���CapRevRes�CapRevResData�id-set-content-CapRevResData���CapToken�CapTokenData�id-set-content-CapTokenData���CapToken�CapTokenTBS�id-set-content-CapTokenTBS���CardCInitRes�CardCInitResTBS�id-set-content-CardCInitResTBS���CertInqReq�CertInqReqTBS�id-set-content-CertInqReqTBS���CertReq�CertReqData�id-set-content-CertReqData���CertReq�CertReqTBS�id-set-content-CertReqTBS���CertRes�CertResData�id-set-content-CertResData���CredReq�CredReqTBS�id-set-content-CredReqTBS���CredReq�CredReqTBSX�id-set-content-CredReqTBSX���CredRes�CredResData�id-set-content-CredResData���CredRevReq�CredRevReqTBS�id-set-content-CredRevReqTBS���CredRevReq�CredRevReqTBSX�id-set-content-CredRevReqTBSX���CredRevRes�CredRevResData�id-set-content-CredRevResData���InqReqSigned�InqReqData�id-set-content-InqReqData���Me-AqCInitRes�Me-AqCInitResTBS�id-set-content-Me-AqCInitResTBS���PCertReq�PCertReqData�id-set-content-PCertReqData���PCertRes�PCertResTBS�id-set-content-PCertResTBS���PInitRes�PInitResData�id-set-content-PInitResData���PISignature�PI-TBS�id-set-content-PI-TBS���PRes�PResData�id-set-content-PResData���RegFormRes�RegFormTBS�id-set-content-RegFormResTBS���SignedError�ErrorTBS�id-set-content-ErrorTBS��

�DigestedData

DigestedData�The following table shows the SET message (or data structure within a message), the content and the contentType for digested data.��

�Message / Data Structure�Content�Content Type���AuthReq�PI�id-set-content-PI���AuthRes�AuthResBaggage�id-set-content-AuthResBaggage���AuthRes�PANToken�id-set-content-PANToken���AuthRevReq�AuthRevReqBaggage�id-set-content-AuthRevReqBaggage���AuthRevRes�AuthRevResBaggage�id-set-content-AuthRevResBaggage���AuthToken�PANToken�id-set-content-PANToken���CapReq�CapTokenSeq�id-set-content-CapTokenSeq���CapReq�PANToken�id-set-content-PANToken���CapRevReq�CapTokenSeq�id-set-content-CapTokenSeq���CapRevReq�PANToken�id-set-content-PANToken���CapToken�PANToken�id-set-content-PANToken���CertReq�AcctInfo�id-set-content-AcctInfo���CredReq�CapTokenSeq�id-set-content-CapTokenSeq���CredReq�PANToken�id-set-content-PANToken���CredRevReq�CapTokenSeq�id-set-content-CapTokenSeq���CredRevReq�PANToken�id-set-content-PANToken���HOD�HODInput�id-set-content-HODInput���HOIData�OIData�id-set-content-OIData���HPIData�PIData�id-set-content-PIData���OIDualSigned�PIData�id-set-content-PIData���OIUnsigned�PIDataUnsigned�id-set-content-PIDataUnsigned���PIDualSigned�PANData�id-set-content-PANData���PI-OILink�OIData�id-set-content-OIData���PIUnsigned�OIData�id-set-content-OIData���PIUnsigned�PANToken�id-set-content-PANToken���RegFormReq�PANOnly�id-set-content-PANOnly���RootKeyThumb�SubjectPublicKeyInfo�id-set-rootKeyThumb��

�EnvelopedData

EnvelopedData�The following table shows the SET message (or data structure within a message), the content and the contentType for enveloped data.��

�Message / Data Structure�Content�Content Type���AcqCardMsg�AcqCardCodeMsgTBE�id-set-content-AcqCardCodeMsgTBE���AuthReq�AuthReqTBE�id-set-content-AuthReqTBE���AuthRes�AuthResTBE�id-set-content-AuthResTBE���AuthRes�AuthResTBEX�id-set-content-AuthResTBEX���AuthRevReq�AuthRevReqTBE�id-set-content-AuthRevReqTBE���AuthRevRes�AuthRevResTBE�id-set-content-AuthRevResTBE���AuthRevRes�AuthRevResTBEB�id-set-content-AuthRevResTBEB���AuthToken�AuthTokenTBE�id-set-content-AuthTokenTBE���BatchAdminReq�BatchAdminReqTBE�id-set-content-BatchAdminReqTBE���BatchAdminRes�BatchAdminResTBE�id-set-content-BatchAdminResTBE���CapReq�CapReqTBE�id-set-content-CapReqTBE���CapReq�CapReqTBEX�id-set-content-CapReqTBEX���CapRes�CapResTBE�id-set-content-CapResTBE���CapRevReq�CapRevReqTBE�id-set-content-CapRevReqTBE���CapRevReq�CapRevReqTBEX�id-set-content-CapRevReqTBEX���CapRevRes�CapRevResTBE�id-set-content-CapRevResTBE���CapToken�CapTokenTBE�id-set-content-CapTokenTBE���CapToken�CapTokenTBEX�id-set-content-CapTokenTBEX���CertReq�CertReqTBE�id-set-content-CertReqTBE���CertReq�CertReqTBEX�id-set-content-CertReqTBEX���CertRes�CertResTBE�id-set-content-CertResTBE���CredReq�CredReqTBE�id-set-content-CredReqTBE���CredReq�CredReqTBEX�id-set-content-CredReqTBEX���CredRes�CredResTBE�id-set-content-CredResTBE���CredRevReq�CredRevReqTBE�id-set-content-CredRevReqTBE���CredRevReq�CredRevReqTBEX�id-set-content-CredRevReqTBEX���CredRevRes�CredRevResTBE�id-set-content-CredRevResTBE���PIDualSigned�PIDualSignedTBE�id-set-content-PIDualSignedTBE���PIUnsigned�PIUnsignedTBE�id-set-content-PIUnsignedTBE���RegFormReq�RegFormReqTBE�id-set-content-RegFormReqTBE��

�Appendix N�Check Digit Algorithm

Purpose�This appendix describes the standard algorithm used by the payment card industry for check digits. It is provided as information only, and is not specific to SET.��

Calculating a check digit�To calculate the check digit for a payment card account number:��

Step�Action���Number the account number digits from right to left, starting with the check digit as number one.���Ignoring the check digit, multiply the even numbered digits by two (2), and the odd-numbered digits by one (1).���Calculate the sum of all the digits of the products as a string without regard to boundaries. That is, if a product from Step 2 was a 2-digit number, add each of the digits individually.���Subtract the result from the next higher multiple of ten (10). The resulting mod-10 residue is the check digit.��

Example�The table below shows the results of applying the algorithm described above to the example account number 4287 9478.��

Step����Digit number:	8	7	6	5	4	3	2	1

Example account number:	4	2	8	7	9	4	7	8���Multiplier:	x2	x1	x2	x1	x2	x1	x2

Products:	8	2	16	7	18	4	14���Sum:	8+2+1+6+7+1+8+4+1+4 = 42���Check digit	50 - 42 = 8��

�Appendix P�Guidelines for Secure Implementation of SET

Overview

Introduction�This appendix is based on an RSA Laboratories Technical Note prepared by �Burton S. Kaliski Jr., Ph.D. and M.J.B. Robshaw, Ph.D. of RSA Laboratories.

The authors have provided this overview of techniques for the secure implementation of cryptographic systems, which is intended to assist developers and engineers in developing applications that provide the full security envisaged by the designers of SET. It covers general issues, such as random number generation and protection of keys, and addresses their particular application to SET.

Copyright (1996, 1997, RSA Laboratories and Visa International. All rights reserved.��

Organization�This appendix includes the following topics:��

Topic�Page��� REF map_RSA_Intro * MERGEFORMAT �Introduction��� PAGEREF map_RSA_Intro �518���� REF map_RSA_Bkgrd * MERGEFORMAT �Background on Cryptography Used in SET��� PAGEREF map_RSA_Bkgrd �520���� REF map_RSA_Assump * MERGEFORMAT �Assumptions about the SET Environment��� PAGEREF map_RSA_Assump �522���� REF map_RSA_Gnl_Gdlines * MERGEFORMAT �General Implementation Guidelines��� PAGEREF map_RSA_Gnl_Gdlines �524���� REF map_RSA_Apply_Gdlns * MERGEFORMAT �Applying these Guidelines to SET��� PAGEREF map_RSA_Apply_Gdlns �538���� REF map_RSA_Addl_Crypto * MERGEFORMAT �Additional Cryptographic Issues��� PAGEREF map_RSA_Addl_Crypto �544���� REF map_RSA_Conclusion * MERGEFORMAT �Conclusion��� PAGEREF map_RSA_Conclusion �545���� REF map_RSA_References * MERGEFORMAT �References��� PAGEREF map_RSA_References �546���� REF map_RSA_Chklsts * MERGEFORMAT �Secure Implementation Checklists��� PAGEREF map_RSA_Chklsts �548���

�Introduction

Need for secure transaction processing�The world is witnessing a vast explosion in the popularity and availability of the Internet and the World Wide Web. With the expanded access to these networks and their ever-increasing popularity, there are new business opportunities. The World Wide Web in particular offers considerable business potential, as it gives vendors access to a much wider customer base than previous geographical constraints permitted.

Perhaps the chief obstacle to using the Internet or the World Wide Web as a medium for financial transactions is the reasonable belief that without adequate safeguards, personal and sensitive information such as payment card numbers and transaction amounts are vulnerable to interception by potentially malicious entities.

The cryptographic technology that can provide such safeguards has been available for many years and the dynamics of the market make it necessary to standardize on a means of securely enabling card payments over the Internet and the World Wide Web.��

The SET specification�Visa and MasterCard have addressed this need with the co-development of the SET Secure Electronic Transaction specification. Now in the final stages of development, this specification is sufficiently broad and well-defined that developers and implementers can work on producing SET-compliant software and applications. This work will continue to find its way into a wide range of future products.

There is, however, a potentially great gulf between developing an application that starts with the SET specification and successfully producing an application that provides the full security that is intended by the designers of SET. These guidelines are intended to:

highlight some of the important security issues that face application developers and implementers as they design a SET-enabled application;

provide general guidance on issues such as key generation and the protection of keys and data—these issues as they apply to SET are discussed in more detail later in this document; and

offer information in the form of checklists to assist in developing and validating implementations of the SET protocol.

These guidelines are not intended as a comprehensive description of how to obtain a secure implementation of SET. Rather, they advocate general principles for a secure implementation. It is for the implementer and the validator of a SET implementation to demonstrate compliance between specific implementation techniques and the outlined principles.��Continued on next page

��styleref "Map Title"�Introduction�, continued

Related work�These guidelines are intended to be complementary to other publications such as “Good Programming Practices,” published as part of FIPS 140-1 [NIS95]. The reader is encouraged to refer to this and other such publications for more information and general guidance on good programming techniques for cryptographic applications.��

�Background on Cryptography Used in SET

Introduction�The SET Specification provides a mechanism to enable secure payment card transactions over unsecured networks.��

Data confidentiality�The idea of data confidentiality is fundamental to protecting transactions, as described earlier in this book (Part I, Chapter 3, Confidentiality):

Data confidentiality is the protection of sensitive and personal information from unintentional and intentional attacks and disclosure. Securing such data requires data encryption and associated key management in uncontrolled environments, such as unsecured networks.

Data confidentiality and methods of authentication can be provided by the field of cryptography [RSA96]. The SET Specification calls on a variety of techniques, some of which are highlighted in this section as background to the guidelines that follow. These techniques include:

symmetric encryption,

asymmetric encryption,

digital signatures, and

hash function.��

Symmetric encryption�Symmetric encryption is a method of converting data into an unintelligible form so that only participants who possess the secret key can recover the meaningful data. Two symmetric ciphers are used in SET: DES [NIS94a] and CDMF [JMLW93].

With symmetric encryption, both the sender and the receiver of the encrypted message must possess the same key.��

Asymmetric encryption�Asymmetric encryption is also a method of converting data into an unintelligible form. It differs from symmetric encryption in that the sender of the message and the recipient use different keys. In fact, the public key, used to encrypt the message, is published (as the name implies); therefore, anyone can send an encrypted message to the intended receiver.

However, only the receiver is able to decrypt the enciphered message, since only the receiver possesses the corresponding private key. This private key must be kept secret. ��Continued on next page

�Background on Cryptography Used in SET, continued

Digital envelope�In SET, asymmetric and symmetric encryption techniques are used together for a digital envelope, in which:

first, the message is encrypted using a symmetric cipher with a randomly generated key

then, the key used to encrypt the message is itself encrypted using public-key encryption.

In SET, RSA [RSA78].is the only specified method of public-key encryption.:��

Digital signatures�A public/private key pair can also be used to generate a digital signature. To provide a digital signature, a document is transformed in a way that depends on the private key of the signer. Since the corresponding public key is widely available, this transformation can be reversed by anyone using the public key. In essence, public-key cryptography is being used to perform an operation that can only be successfully completed by one person, yet can be verified by anyone. These properties are analogous to the conventional handwritten signature.

Digital signatures are also widely used to provide public-key certificates. Such certificates are used to assure users that a specific public key is legitimate and indeed belongs to the correct user.��

Hash function�Another primitive widely used in SET is a hash function. Hash functions have a wide variety of properties. The specific hash function used in SET, SHA-1 [NIS94b], is used at different places for different reasons.

Two of the main properties of SHA-1 are:

collision-resistance—meaning that it is difficult to find two inputs that produce the same output

one-wayness—meaning that it is difficult to find any input that produces a given output.

SHA-1 is also used because it is believed that:

the output from an iteration of SHA-1 is not easily distinguished from a truly random string

the outputs from two closely related, but distinct, inputs to SHA-1 will appear to be unrelated.��

�Assumptions about the SET Environment

Ideal environment for SET�In an ideal environment, with complete physical and logical access control, a SET-compliant implementation with local key storage and strong random number generation will be secure, to the extent that SET itself is secure. Since keys are stored locally, the physical access control to the environment prevents attacks on the keys; the strong random number generation ensures that the keys are sufficiently unpredictable.

In such an environment, there is no need for further implementation guidelines. Any errors in the implementation are concealed by the access control to the environment; no opponent can exploit them.

On the other hand, in the ideal environment for an opponent, everything is visible, including all keys, and no implementation can be secure. Again there is no need for implementation guidelines, as even correct operation can be exploited by the opponent.

In practice, environments fall somewhere between the extremes of complete control and total visibility; and for such environments, implementation guidelines are quite helpful. Therefore, it is important to define this practical environment as a context for these guidelines.��

A typical environment for SET�A typical environment to consider is one where the SET implementation runs as a process on a workstation, with a standard operating system, potentially shared access to files, and possibly peripheral cryptographic hardware. More specifically, the following assumptions can be made:

operating system integrity—that the operating system software is in its original state and cannot be modified. Configurable aspects of the operating system may be changed, but it is also assumed that these changes have no impact on security.

SET application integrity—that the SET application software is in its original state and cannot be modified

process memory integrity and confidentiality—that an opponent cannot examine or alter the internal memory space of a process during the execution of a process.

However, no assumptions are made about the exposure of the memory space after the process executes, or about portions of allocated memory that are freed or swapped to disk space while the process is executing. Also, it should be assumed that if cryptographic hardware is present, the path between the process and the hardware has integrity and confidentiality; however, the hardware itself may be available to the opponent at other times.

clock integrity—that an opponent cannot alter the local clock and that the clock is sufficiently accurate for the purposes of SET.��Continued on next page

�Assumptions about the SET Environment, continued

Primary concerns�Given these assumptions, there is not a concern with attacks where an opponent modifies the operating system or the SET application—obviously, such attacks could potentially reveal keys and other quantities. More specifically, there is not a concern with computer viruses or other forms of software intrusion by which an opponent can alter the operation of the SET application.

Instead, it is assumed that it is normal operating practice to detect and remove such intrusions. It is acknowledged that there are other intrusions such as keystroke recorders which can intercept passwords, and but again assume that such intrusions are detected and removed. The primary interest is in:

attacks on stored data and on the remnants of the execution of a SET process, including:

– files stored by the SET application, which may contain keys, and

– processor memory and disk swap files on release by the SET application

attacks based on weaknesses in random number generation are also of interest.��Assumptions about the opponent�It is assumed that the opponent has:

full knowledge of the SET software and its external behavior, but no knowledge of its internal behavior, except possibly its timing characteristics

complete control over the inputs to the SET software, whether supplied over the network, in files, or through a user interface.

However, the opponent is not expected to have knowledge of secret user information such as PINs and passwords, nor of any secret or private keys or sensitive data.

At this point, there is not a concern with attacks where the opponent attempts to introduce errors in the SET application through physical intrusion and thereby compromise security—as described, for example, in a recent security announcement by Bellcore [Bel97]. While such attacks are theoretically possible, they can be prevented by physical means. Also not addressed are attacks based on the analysis of timing characteristics of SET processing [Koc96]; these can be handled through means such as those described in RSA Laboratories’ bulletin on timing attacks [Kal96].��

�General Implementation Guidelines

Introduction�This section provides general implementation guidelines, which are based on the assumptions discussed in the previous section. These guidelines are intended to ensure the security of a cryptographic system, including SET. For each guideline, the rationale is given, followed by implementation considerations.

These guidelines cover the following topics:

random number generation

public asymmetric keys

private asymmetric and secret symmetric keys

sensitive data

memory leakage��

�Guideline 1: Random Number Generation

Guideline�Random number generation must be cryptographically strong:

It must be computationally infeasible for an opponent who knows partial information about the random number generator to determine any other information about the output, with a better success rate than would be achieved by guessing.

The generator’s level of cryptographic strength must be at least as great as that of the algorithms for which keys and other quantities are generated. In other words, the random number generator must not be the weakest link.��

Rationale�Some outputs of a random number generator may be transmitted in the clear in some applications; others may be accessible to the opponent, such as symmetric keys distributed to the opponent acting as a valid participant. Still others may be compromised through cryptanalysis or implementation failures by other participants. Thus it is reasonable to assume that an opponent has partial information about the output of the random number generator. Despite this information, the opponent should have no advantage over guessing in determining other outputs from the random number generator.

The overall security of a system depends not only on key sizes, but also on the quality of the generation of the keys. Thus it is important that the random number generator provide sufficient quality keys, and that it be at least as difficult to attack as the keys themselves. Indeed, the more keys that are derived from a random number generator, the greater its strength must be, since compromise of the generator can potentially compromise all the keys derived from it.��

Implementation considerations�Other implementations may well be possible, in addition to the following, which are discussed here:

hardware random number generators

pseudorandom number generators

multiple random number generators

Further discussion on random number generation can be found in [ECS94].��

Hardware random number generator�A high-quality hardware random number generator, for instance within a cryptographic module, is perhaps the best source of randomness.

Note that with a hardware random number generator, it would be prudent to ensure that checks are in place to detect hardware failures.��Continued on next page

�Guideline 1: Random Number Generation, continued

Pseudorandom number generator�A cryptographically strong pseudorandom number generator with a seed of sufficient unpredictability can also provide a good source of randomness.

While no generator has been proved cryptographically strong without assumptions, cryptographically strong pseudorandom number generators have been shown to exist under assumptions such as the difficulty of factoring [BBS86]. Constructions based on hash functions have also been given, which have a heuristic basis for security [NIS94c]; some require a secret key as input in addition to the seed.

Note that standard library functions, such as C’s rand(), are not cryptographically strong.

A sufficiently unpredictable seed can generally be obtained by appropriate sampling of system events which are individually unpredictable; see [Mat96].

One type of seed input that is particularly interesting is a random “pool,” obtained from sampling of previous system events which is stored after encryption with a secret key—it may also be helpful to authenticate it. This provides a continuity between instances of the random number generator, and reduces the number of new seed samples that might be required.

Note that system information such as the time in seconds is not sufficiently unpredictable, though the microsecond portion of the time can be taken as part of a random seed on some systems.

A variation on a pseudorandom generator where additional seed material can be mixed in after the output has been generated may be helpful, since this would provide further protection to later outputs, should earlier outputs be compromised.��

Multiple random number generators�It may be appropriate in some cases to have more than one random number generator in an implementation, where, for instance, keys and nonces are derived from different generators. In addition, it may be helpful to have different seeds for different quantities, even with the same generator. While in principle the strongest of the generators should suffice for all quantities, it may be more efficient in practice to have different generators for different purposes. A similar observation can be made for seeds.

As examples:

keys may be generated within a cryptographic module with a high-quality hardware random number generator, and nonces generated within software; or

keys may be derived from a generator that is slower but provably secure (under assumptions), while nonces are derived from a generator that is faster but only heuristically secure.��

�Guideline 2: Public Asymmetric Keys

Guideline�Public asymmetric keys must be protected from modification and must retain their binding to any associated attributes.

It must not be possible for an unauthorized party to alter any of the following without detection:

the value of a public asymmetric key

the value of its associated attributes, or

the binding between the key and its attributes.

When a key is in processor memory, it is assumed to be sufficiently protected. Thus, the primary issue is how keys are stored outside processor memory.��

Rationale�Protection of public keys from disclosure is not a concern, since a public key is prima facie assumed to be known. For similar reasons, protection against misuse is not a direct concern—of course, it is a concern with respect to the data that is being encrypted with the public key.

However, public keys must be protected from modification. Otherwise, certain cryptographic attacks may be possible—for example, those that might involve the substitution of different keys. Similarly, keys must retain their binding to associated attributes, such as their lifetime and ownership, to prevent attacks where an old key is reused or where the wrong key is used. Not only must a public key be protected from modification; in addition, the meaning of the key must be preserved.��

Implementation considerations�This section addresses the following implementation options:

read-only storage

data integrity mechanism

a combination of physical and logical protection

hierarchical protection

specifying attributes implicitly.��Continued on next page

�Guideline 2: Public Asymmetric Keys, continued

Read-only storage�The basic physical means for protection against modification is read-only storage—that is, read-only to outsiders, though potentially writeable by the application software. Read-only storage can be accomplished in a variety of ways, including:

operating system controls;

storage within a cryptographic module whose access is controlled; and

storage within the application software itself, which is assumed to have integrity.

Storage controlled by the operating system is perhaps the most practical form of physical protection for most keys, given the limited storage in a typical cryptographic module and the difficulty of updating application software with new keys.��

Data integrity mechanisms�The basic logical means for protection is a data integrity mechanism, of which there are two types:

digital signatures and

message authentication codes.

Public-key certificates are a common means of protecting public keys and their attributes with digital signatures. For this approach, an implementation would verify the digital signature before operating with a public key. Note that the verification key itself would first need to be verified.

Message authentication codes are generated with a secret symmetric key and verified with the same key; two popular examples of message authentication codes are described in [NIS85] and [BCK96]. For this approach, an implementation would verify the message authentication code before operating with a public key. The verification key would need to be verified first, and would also need to be protected from disclosure.

The data integrity mechanism should be applied both to the key and to its attributes.

The strength of the integrity mechanism should generally correspond to that of the class of key being protected, to prevent attacks based on substitution of keys. Note that key size is a separate issue from the size of a message authentication code; the latter determines the probability of undetected forgery, rather than the difficulty of key recovery. The acceptable probability will depend on the key being protected, and the ease with which an opponent can have the application check a message authentication code.��Continued on next page

�Guideline 2: Public Asymmetric Keys, continued

A combination of physical and logical protection�A combination of physical and logical protection can sometimes be beneficial. For instance, the binding of certain attributes could be accomplished through read-only storage, while the binding of other attributes is accomplished with a message authentication code based on a key that is stored in a cryptographic module. The requirements of the implementation will determine which combinations are more appropriate.��

Hierarchical protection�Hierarchical protection is often quite practical. If a root public key is stored in application software, then certificates signed with the root private key are protected from modification. Protection is similarly extended to the next level of keys through another level of certificates.

Another way to begin the chain of trust is to protect a small set of public keys from modification with a message authentication code whose verification key is derived from or protected by a user’s password.��

Specifying attributes implicitly�In some cases it is possible to specify certain attributes implicitly—for example, through the name of the file in which the protected public key is stored, where the file name might give the name of the owner. If this is the case, then it is important that the implications cannot be modified. In the example stated, it would be important that the file be protected from renaming; read-only access alone may not be enough.��

�Guideline 3: Private Asymmetric and Secret Symmetric Keys

Guideline�Private asymmetric keys and secret symmetric keys must be protected from modification, disclosure, and misuse; and they must retain their binding to any associated attributes.

It must not be possible for an unauthorized party to obtain the value of a private asymmetric key or a secret symmetric key, or to alter its value, the value of its associated attributes, or the binding between the key and its attributes without detection. As a particular case of unauthorized disclosure, it must not be possible for a party to obtain the encryption of a private asymmetric key or a secret symmetric key with another key that is not trusted by the application.

It must not be possible to use a private asymmetric key or a secret symmetric key in a manner other than that for which it was intended. For instance, it should not be possible to use a private signature key as a decryption key, and more generally, it should not be possible to use one application’s key for the purpose of a different application.

When a key is in processor memory, it is assumed to be sufficiently protected, provided that the processor memory is protected against leakage of data (see the section on memory leakage later in this section).��Continued on next page

�Guideline 3: Private Asymmetric and Secret Symmetric Keys, continued

Rationale�By definition, private asymmetric keys and secret symmetric keys must be protected from:

disclosure, or otherwise they would no longer be private or secret

modification, or otherwise certain cryptographic attacks might become possible

Note that these are independent issues—a key may be protected from disclosure by encrypting it, but unless the encryption also offers integrity, the key will not be protected from modification.

Furthermore, the keys must retain their binding to associated attributes, such as their lifetime and ownership, to prevent attacks where an old key is reused, or where the wrong key is used. It is not enough just that a key cannot be modified; the meaning of the key must also be preserved.

Controlling key usage is important as a general principle to avoid weaknesses arising from interactions between multiple uses. This is a particularly important issue if keys are shared among multiple applications, since even if one application is internally consistent in its use of keys, it may conflict with the other. ��Continued on next page

�Guideline 3: Private Asymmetric and Secret Symmetric Keys, continued

Examples�As one example, suppose a cryptographic module permits a private key both to decrypt encrypted symmetric keys, where the symmetric keys remain within the module, and to decrypt encrypted data, where the data may leave the module. Then an opponent can obtain a symmetric key by treating its encryption as encrypted data.

As another example, if a key is used to sign messages in two applications, and the signatures involve the same data formats and cryptographic techniques, then it will be possible to substitute messages signed in one application with those in the other. The differing interpretations of the same message bytes can lead to potential attacks. These attacks can all be avoided if a key’s use is restricted.

If a private asymmetric key or a secret symmetric key is encrypted with another key, such as a public key, in the process of distributing a secret symmetric key to another party, it should first be verified that the public key is authorized for that operation—based on its ownership and other attributes. Otherwise, the key being distributed may be compromised by the party with the corresponding private key. Presumably, if the public key is authorized for the operation, the party with the private key can be trusted not to compromise the key that has been distributed. The concern over disclosure is balanced in this way with the need to distribute the key to another party.��

Implementation considerations�This section addresses the following implementation considerations:

read-only storage

unreadable storage

data integrity mechanisms

data compatibility mechanisms

a combination of physical and logical protection

hierarchical protection

key usage��Continued on next page

�Guideline 3: Private Asymmetric and Secret Symmetric Keys, continued

Read-only storage�The basic physical means for protection against modification is read-only storage. Also refer to the previous section on public asymmetric keys for further discussion of read-only storage.��

Unreadable storage�The basic physical means for protection against disclosure is unreadable storage—unreadable to outsiders, though readable to the application software.

Unreadable storage can be accomplished in a variety of ways, including operating system controls in some systems and storage within a cryptographic module with controlled access.

Again, storage controlled by the operating-system is perhaps the most practical form of physical protection, given the limited storage in a typical cryptographic module.��

Data integrity and data confidentiality mechanisms�The basic logical means for protection against modification is a data integrity mechanism. Again, refer to the previous section on public asymmetric keys for further discussion.

The basic logical means for protection against disclosure is a data confidentiality mechanism of which there are two types (as discussed in the section on cryptography):

public-key encryption

symmetric encryption.

Typically, symmetric encryption is a more practical approach for stored data, since both types require the storage of a decryption key, which must be protected from disclosure and symmetric techniques are generally more efficient.

The order in which data integrity and data confidentiality are applied can be important, depending on the specific techniques. A generally good approach is:

first, apply data integrity first to both the key and the attributes and

then apply data confidentiality to the key and the integrity check value (signature or message authentication code).

In this way the attributes remain in the clear and no partial information about the key is available through the integrity check value. If an attribute needs to be protected from disclosure, it can be encrypted along with the other parts.��Continued on next page

�Guideline 3: Private Asymmetric and Secret Symmetric Keys, continued

A combination of physical and logical protection�A combination of physical and logical protection can sometimes be beneficial (also refer to the previous section public asymmetric keys). For example, protection against modification could be accomplished through read-only storage, while protection against disclosure is accomplished with symmetric encryption based on a key that is stored in a cryptographic module. The requirements of the implementation will determine which combinations are more appropriate.��

Hierarchical protection�Hierarchical protection is often quite practical (again refer to the previous section). If a master symmetric key is stored in a cryptographic module, then keys encrypted with the master key are protected from disclosure. Protection is similarly extended to the next level of keys through another level of encryption.

Another way to begin the chain of protection is to protect a small set of keys from disclosure with a symmetric key derived from or protected by a user’s password.��

Key usage�Key usage can be specified as an attribute of the key; the implementation would check the key usage attribute before performing a cryptographic operation.

A particularly sensitive key, such as a certificational private key, can be protected against disclosure by encrypting it with a key that is “secret-shared” among several trustees, or even by “secret-sharing” the key itself [Sha85]. In such an implementation, the cooperation of a threshold number of trustees (say, three out of five) is required to reconstruct the key. Any sufficiently large subset can reconstruct the key, but no smaller subset can do so. A variation on this theme is for the cryptographic module itself to hold one of the shares, so that the trustees can only reconstruct the key with a particular module, allowing more control and auditing in the system.

Recently, techniques have been proposed for private asymmetric keys where the private key itself is not even reconstructed, but rather the results of a private-key operation are obtained by the results of the trustees’ operations with secret values derived from the private key [GJKR96]. Such techniques are worth considering further for sensitive keys.��

�Guideline 4: Sensitive Data

Guideline�Sensitive data items must be protected from modification and/or disclosure depending on the type of data, and must retain their binding to any other data items or attributes with which they are associated.��

Rationale�Certain data may need to be protected from various threats; the rationale and implementation is similar to that for keys (refer to the previous two sections on public asymmetric keys, and private asymmetric and secret symmetric keys).

Data items that might need protection include:

key identification information and counters, which must be protected from unauthorized modification

data such as account numbers, which must be protected from unauthorized disclosure

intermediate results of computation that are stored in a file.

A critical attribute of such a result is its place in the current computation, which must be protected to prevent substitution of old results for new ones.��

�Guideline 5: Memory Leakage

Guideline�Processor memory must be protected against leakage of sensitive data.��

Rationale�Processor memory is assumed to have confidentiality only until it is released by a process, so memory that is allocated and later freed may be at risk. Also, depending on the system, memory that is copied to a disk file, as in a virtual memory system, may be at risk.

Note: Leakage is defined as the release of sensitive data, through errors in programming or mishandling of memory.

Intermediate results of cryptographic computations, as well as inputs and outputs, should be considered potentially sensitive. For example, the intermediate products in a private-key operation can give sufficient information for an opponent to determine the private key.

As another example, the data array in a SHA-1 computation will contain sensitive data if the input to SHA-1 is a key, and the state variables in SHA-1 may contain sensitive data if SHA-1 is called as part of random number generation that outputs a key.��

Implementation considerations�This section addresses:

zeroization of memory

scrambling memory��Continued on next page

�Guideline 5: Memory Leakage, continued

Zeroization of memory�Zeroization of memory containing any sensitive or potentially sensitive data, before that memory is released, is an essential practice.

Any data related to a cryptographic operation is potentially sensitive. For instance, the intermediate results of a hash function computation may be sensitive.

Both memory allocated from the heap and memory allocated on the stack should be zeroized.

It may be necessary to lock memory containing sensitive data to prevent it from being swapped to a disk file, in a virtual memory system, if that disk file could later be examined by an opponent. Alternatively, if memory needs to be swapped, then it should be encrypted first with a key that remains in process memory.

Particular attention should be paid to error returns—preferably, all returns from a procedure should pass through a common exit that zeroizes memory.

Storage of sensitive data in registers may be a concern. For instance, if the last operation performed by a process before it exits is an encryption, and the key is stored in registers, then it is possible that some data in those registers might remain available for examination by another process - it is assumed that the registers cannot be examined during the execution of the process. In this case, it is important to zeroize the registers before the process exits.

Note that compiler optimizations may sometimes eliminate zeroization at the end of a procedure, since the zeroized memory is not referenced again within the procedure. If this is the case, zeroization should be done with a procedure call, which the compiler will not eliminate. It is always important to verify not only that the source code is correct, but also that the compiled code is correct; but zeroization is a particular case where the compiler’s definition of correctness may be different than expected.��

Scrambling memory�Scrambling memory containing sensitive data, for example, by encrypting with a key stored elsewhere in memory, is a helpful barrier against failures in the assumption that process memory is private. It is also helpful in a case where the contents of memory are revealed in a way that is beyond the control of the application; for example, if an error crashes the system before the application has an opportunity to zeroize memory. Similarly, to limit exposure in the case of a crash, memory might be zeroized as soon as the data stored in it is no longer needed.��

�Applying these Guidelines to SET

Overview�This section applies the general guidelines to SET, by posing general questions to the SET developer or validator. More detailed checklists are provided following this section.

As a starting point for any developer, the cryptographic boundaries of the trusted environment within which SET will reside must be clearly documented. Any divergence from the assumptions made at the beginning of this appendix must be noted, and their effect on the general guidelines and their application to SET .

Then, the adherence of the SET implementation to the general principles for secure implementation can be documented. This information is presented in the form of five questions.��Continued on next page

�Applying these Guidelines to SET, continued

Question 1�For each random number generator in the SET implementation:

a) describe the requirements for its strength, based on the quantities that are derived from it

b) justify how the required strength is achieved, listing all assumptions on which the claimed strength is based. ��

Assumptions�Assumptions may include the presumed security of certain cryptographic transformations, such as the pseudorandomness of a hash function.

The SET Specification is very clear about the importance of good random number generation. The following is from Book 1: Business Description (Section 3.2, Cryptography):

To provide the highest degree of protection, it is essential that the programming methods and random number generation algorithms generate keys such that keys cannot be easily reproduced using information about either the algorithms or the environment in which the keys are generated.

In SET, cryptographically strong random number generation is required for all keys, as well as certain data items. These include generation of the following:

all the message-encrypting public/private key pairs that are used by all the SET participants;

all certificational public/private key pairs used within SET;

all DES and CDMF keys;

all random nonces, challenges and other random quantities such as the unique transaction number;

all the random data required for the OAEP encryption method—the following quotation appears in this book (Part 1, Chapter 4, Section 2, Cryptography):

Poor key generation and seeding methods due to using weak random numbers are common downfalls of cryptographic implementations.��Continued on next page

�Applying these Guidelines to SET, continued

Assumptions, continued�For SET, the random number generator shall have a level of security at least as great as 1024-bit RSA, 2048-bit RSA, DES or CDMF, depending on the algorithms for which keys are generated. As a general principle, random data generated by SET should be derived from sufficient truly random seed so that the intended cryptographic strength of the random quantities as used within the SET specification is not being undermined by the generation process itself.

This book of the SET specification (see Part 1, Chapter 4, Section 2) addresses the issue of using different random number generators and different seeds as follows:

For cryptographic purposes, once a strong seed is collected, it shall either be used one time only or it shall be used exclusively in cryptographically secure random number generators. Also, each instance of cryptographic algorithm shall have its own independent key-generation seed.��Continued on next page

�Applying these Guidelines to SET, continued

Question 2�For each public asymmetric key in SET, describe how its required protection is achieved by the SET implementation, listing all assumptions on which the claimed protection is based��

�Required protection of public keys includes, at a minimum, protection from modification, and may also include usage controls and binding to other attributes.

Assumptions may include the presumed security of certain cryptographic transformations such as RSA signatures.

All public keys in SET and their attributes require protection from modification or replacement. One straightforward way of achieving this is by the use of certificates. At any level in a certification hierarchy the certificate binds the public key and attributes to some user at some lower level in the hierarchy. If each public key is certified (by means of the certification chain back to the Root CA) whenever it is used, then the threat of attack on the integrity and use of some public key is greatly reduced.

In certain situations it may well be preferable to verify a public-key certificate once and then to cache the public key in storage for later use. If such techniques are used then the proper cryptographic safeguards must be provided so that the integrity of the public key and its attributes are protected since these properties might not be checked again via certificates before use.

Note: The authentication of the Root CA certificational and CRL public keys requires special consideration since these keys cannot be authenticated by certificates. Instead the Root CA public keys are first distributed in the form of a self-signed certificate and they must then be stored in a properly authenticated manner.��Continued on next page

�Applying these Guidelines to SET, continued

Question 3�For each private asymmetric key and secret symmetric key in SET, describe how its required protection is achieved by the SET implementation, listing all assumptions on which the claimed protection is based.��

�Required protection includes, at a minimum, protection from disclosure and modification, and also may include usage controls and binding to other attributes.

Assumptions may include the presumed security of certain cryptographic transformations such as DES encryption.

All private keys in SET are sensitive and need to be stored in a way that guarantees their secrecy and maintains the integrity of both the keys and their attributes. They also must be used according to their intended usage. Note that the number of different private keys that might need to be stored will differ greatly depending on which participant we consider in the SET transaction.

As remarked in the section on private asymmetric and secret symmetric keys, keys that are generated for symmetric encryption are also sensitive. For the most part, these keys are intended to be used on a per-message basis. They are to be generated fresh and then included within an RSA digital envelope that is sent to the intended recipient. There is often no need for this symmetric key to be stored. Usually any message incoming to a participant will contain the relevant (fresh) symmetric key within the envelope. There are exceptional circumstances however, such as the cardholder offering the payment gateway the possibility of secure communication back to the cardholder, when a symmetric encryption key that has already been generated, might have to be used. In such cases the storage of symmetric keys becomes an issue.��Continued on next page

�Applying these Guidelines to SET, continued

Question 4�For each sensitive data item in SET, describe how its required protection is achieved by the SET implementation, listing all assumptions on which the claimed protection is based. ��

�Required protection includes protection from disclosure and/or modification, depending on the data, and also include binding to attributes and other data items.

Assumptions may include the presumed security of certain cryptographic transformations such as DES encryption.

Data that is considered sensitive within the SET specification includes the PAN data, transaction information, payment card information and perhaps more depending on the participants and the messages being transmitted. If such information needs to be temporarily stored, and it is not directly protected by the message encryption techniques used during transmission, then the data must be protected against disclosure and modification by other cryptographic mechanisms as described in the previous section on sensitive data. It might well be a wise precaution to treat all data, as a default, as being as sensitive as key material and to take adequate precautions in its handling and storage.

Note: Certificates and CRLs do not need any protection, as their protection is built-in: by definition they are verified before use. In SET, the concept of a Brand CRL Identifier (BCI) is introduced to identify the CRLs that will be needed as part of signature verification. The BCI is itself authenticated using digital signature techniques.��

Question 5�Describe how processor memory is protected against leakage of sensitive data.��

�This is a highly implementation-dependent issue and does not have any particular considerations that are a result of the SET specification. ��

�Additional Cryptographic Issues

Introduction�The public key capabilities in SET are built around the use of RSA encryption and digital signatures. An important aspect of any implementation of SET will be the way that the RSA keys are actually generated. While this topic may be outside the scope of the SET Specification, it is mentioned here because this issue is so fundamental to security.��

The RSA public key�The RSA public key consists of an RSA modulus and a public exponent. The RSA modulus is generated so that it consists of the products of two primes that are of roughly equal size. The security of RSA depends on the fact that it is particularly difficult to factor this type of modulus.

When generating primes of the size required to form the RSA modulus, it is common to use what are termed primality tests. These are efficient tests that indicate whether a given number is composite or prime with some level of confidence. By repeating such tests often enough, the probability that a composite number passes all the tests can be made arbitrarily small—for certain tests, the possibility of error can be eliminated entirely.��

Strong primes�Some mention has been made in the literature to strong primes. These are prime numbers that are generated so that they have some particular properties. These properties were historically intended to provide protection against some of the earlier factoring algorithms. Today, however, it is widely believed that the use of strong primes is not required for RSA moduli of the size used in SET.��

Choice of public exponent�The choice of public exponent, at this stage in the development of the SET specification, is left open to developers. With the OAEP format of RSA encryption that has been adopted within SET, there are no known bad public exponents. For reasons of good performance some common choices for the public encryption exponent are 3 or 216 +1 (also known as F4) and there is no reason to question the security offered by either of these choices.��

The issue of DES weak keys�Another cryptographic issue that may be of concern to developers is that of DES weak keys. It is well known that DES has what are termed weak keys. There are four of these keys and they are characterized by the fact that encrypting twice with one of these four keys will produce the initial input. The choice of whether to test for the presence of DES weak keys is left open to the developer. However, note that the probability of using one of these weak keys (or one of the 12 related semi-weak keys) is so exceptionally small when DES keys are generated at random, that a test for DES weak keys is very unlikely ever to detect one.��

�Conclusion

�By standardizing on security techniques, the SET Specification lays the groundwork for secure payment card transactions over the Internet and the World Wide Web. The next challenge is to successfully produce applications that provide the full security as envisaged by the SET designers. The checklists that follow the next section on references are intended to assist developers and engineers in accomplishing this objective.

The authors have provided this overview of techniques for the secure implementation of cryptographic systems with the aim of helping to meet the stated challenge. Their goal is that these guidelines will assist those developing and validating SET implementations.

The authors welcome comments and suggestions. ��

�References

Bibliography���

[Bel97]�D Boneh, R. DeMillo and R. Lipton. On the importance of checking cryptographic protocols for faults. In W. Fumy (ed.), Advances in Cryptology - Eurocrypt ‘97. Lecture Notes in Computer Science, vol. 1233, pages 37-51, Springer-Verlay, 1997.��[BBS86]�L. Blum, M. Blum and M. Shub. A simple unpredictable random number generator. SIAM Journal on Computing, 15:364-383, 1986.��[BCK96]�M. Bellare, R. Canetti and H. Krawczyk. Keying hash functions for message authentication. In N. Koblitz (ed.) Advances in Cryptology - Crypto ‘96. Lecture Notes in Computer Science, vol. 1109, pages 1-15, Springer-Verlag, 1996.��[BR94]�M. Bellare and P. Rogaway, Optimal asymmetric encryption. In Advances in Cryptology - Eurocrypt ‘94. Lecture Notes in Computer Science, vol. 950, pages 92-111, Springer-Verlag, 1994.��[ECS94]�D. Eastlake, S. Crocker and J. Schiller. RFC 1750: Randomness Recommendations for Security, December, 1994. Available from ftp://ds.internic.net/rfc/rfc1750.txt.��[GJKR96]�R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient sharing of RSA functions. In N. Koblitz (ed.) Advances in Cryptology - Crypto ‘96. Lecture Notes in Computer Science, vol. 1109, pages 157-172, Springer-Verlag, 1996.��[JMLW93]�D. Johnson, S. Matyas, A. Le, and J. Wilkins. Design of the commercial data masking facility data privacy algorithm. In Proceedings of 1st ACM Conference on Computer and Communications Security, pages 93-96, ACM, 1993.��[Kal96]�B. Kaliski, Timing Attacks on Cryptosystems, RSA Laboratories Bulletin, No. 2, January 23, 1996. Available from http://www.rsa.com.��[Koc96]�P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. In N. Koblitz (ed.) Advances in Cryptology - Crypto ‘96. Lecture Notes in Computer Science, vol. 1109, pages 104-113, Springer-Verlag, 1996.��[Mat96]�T. Matthews, Suggestions for Random Number Generation in Software. RSA Laboratories Bulletin, No. 1, January 22, 1996. Available from http://www.rsa.com.��[NIS85]�National Institute of Standards and Technology (NIST). FIPS Publication 113: Computer Data Authentication. May 1985. Available from http://csrc.ncsl.nist.gov/fips/.��[NIS94a]�National Institute of Standards and Technology (NIST). FIPS Publication 46-2: Data Encryption Standard. February 1994. Available from http://csrc.ncsl.nist.gov/fips/.��Continued on next page

�References, continued

[NIS94b]�National Institute of Standards and Technology (NIST). FIPS Publication 180-1: Secure Hash Standard. April 1994. Available from http://csrc.ncsl.nist.gov/fips/.��[NIS94c]�National Institute of Standards and Technology (NIST). FIPS Publication 186: Digital Signature Standard (DSS). May 1994. Available from http://csrc.ncsl.nist.gov/fips/.��[NIS95]�National Institute of Standards and Technology (NIST). FIPS Publication 140-1: Security Requirements for Cryptographic Modules. October 1995. Available from http://csrc.ncsl.nist.gov/fips/.��[RSA78]�R. Rivest, A. Shamir and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2): 120-126, February 1978. ��[RSA96]�RSA Laboratories. Answers to Frequently Asked Questions about Today’s Cryptography. Version 3.0, 1996. Available from http://www.rsa.com.��[SET96]�SET Secure Electronic Transaction Specification, Latest revisions on August 1, 1996. Available from http://www.visa.com/ or http://www.mastercard.com/.��[Sha79]�A. Shamir. How to share a secret. Communications of the ACM, 22: 612-613, 1979.��

�Secure Implementation Checklists

Preface�These checklists are for developers of SET-enabled applications. They combine simple questionnaires with more detailed questions requiring longer answers.

Compliance with this checklist alone is not sufficient to guarantee the security of an implementation of SET. However, it does cover issues that are pertinent to the development of any cryptographic application, and in particular, to those following the SET Specification. In this sense, compliance with the checklist should be viewed as a necessary requisite for the development of a secure SET implementation.

One intention of these checklists is to present questions in a way that will cause the developer to pause and consider exactly how the SET Specification has evolved into a working product. These checklists are not meant to be exhaustive in terms of every potential flaw in a given application, a goal that is arguably unattainable anyway.

However, they are intended to be sufficiently general and relevant to provide the reviewer with a good overall view of the integrity of the development work that has gone into the particular application under review.

The questions are divided into sections following the organization of the associated report. For further discussion on any of the issues raised in this checklist, see the main report for more detail.��

�Checklist: Assumptions about the SET Environment

Number�Question��1.�Describe and document the features of the anticipated running environment such as how and where the SET implementation is anticipated to run, what operating system might be used, what files will be shared and by whom and what peripheral cryptographic hardware will be required.��2.�There are a number of issues that may affect the security of the SET application in an actual running environment. These issues are addressed in the questions below.

Is the operating system software in its original state? Is it feasible to modify the operating system?

Is the SET application software in its original state? Is it feasible to modify the SET application software?

Is it feasible for an opponent to examine or alter the internal memory space of a process during the execution of a process?

If cryptographic hardware is present, can the integrity and confidentiality of the path between the process and the hardware be vouched for?

Is it feasible for an opponent to alter the local clock? Is the local clock sufficiently accurate for the purpose of SET?

Will normal operating practice detect and remove intrusions such as computer viruses and other forms of software intrusion by which an opponent can alter the operation of the SET application?

Are the cryptographic boundaries of the trusted environment within which SET will reside clearly documented?��3.�To what extent are these issues a concern for the security of your application? To what extent are they uncertain in the actual running environments described in your answer to the previous question? Describe how any such uncertainties are addressed and what instructions if any are given to users of the application in dealing with them.��

�Checklist: Random number generation

Number�Question��1.�How many random number generators are used in the SET implementation? Which generators are used for the generation of which cryptographic quantities? For each random number generator in the SET implementation, describe the requirements for its strength based on the quantities that are derived from it and justify how the required strength is achieved, listing all assumptions on which the claimed strength is based.��2.�Describe exactly how the SET application will obtain the random bits necessary within SET. How are the different seeds used for the generation of different cryptographic quantities? Describe completely the methods by which any required seed is obtained. If the sampling of system events is required, provide documentary evidence that the individual events used are sufficiently unpredictable and independent as to provide the expected security.��3.�Complete the following checklist:��

�yes�no��If a hardware source of random numbers is used, has its performance been assessed and certified?�(�(��If a hardware source of random numbers is used, are there checks to detect hardware failures?�(�(��If the technique of a random “pool” is used, are the confidentiality and integrity of the random pool guaranteed?�(�(��If this guarantee is provided cryptographically, are the necessary keys protected from disclosure or modification?�(�(��Note: If you answer “no” to any of the above questions, quantify and summarize the effect of this divergence from the general guidelines and their application to SET.

�Checklist: Public Asymmetric Keys

Number�Question��1. �For each public asymmetric key in SET, indicate below what method or methods are used to protect it from modification. The available options are:

operating system controls (OSC),

message authentication codes (MAC),

digital signatures; for example, certificates, (DS),

some other method, or

not applicable; for example, for keys not handled by the implementation.

Note that certificates are a natural way of protecting public keys in SET, since public keys are distributed in certificates, but that other ways are possible.��

Public Key��OSC�MAC�DS�Other�N/A��Cardholder message signature��(�(�(�(�(��Merchant message signature��(�(�(�(�(��Merchant key-exchange��(�(�(�(�(��Payment gateway message signature��(�(�(�(�(��Payment gateway key-exchange��(�(�(�(�(��Cardholder CA message signature��(�(�(�(�(��Cardholder CA key-exchange��(�(�(�(�(��Cardholder CA certificate��(�(�(�(�(��Merchant CA message signature��(�(�(�(�(��Merchant CA key-exchange��(�(�(�(�(��Merchant CA certificate��(�(�(�(�(��Payment gateway CA message signature��(�(�(�(�(��Payment gateway CA key-exchange��(�(�(�(�(��Payment gateway CA certificate issuing��(�(�(�(�(��Payment gateway CA CRL��(�(�(�(�(��Geo-political CA certificate issuing��(�(�(�(�(��Geo-political CA CRL��(�(�(�(�(��Brand CA certificate��(�(�(�(�(��Brand CA CRL��(�(�(�(�(��Root CA certificate��(�(�(�(�(��Root CA CRL��(�(�(�(�(��Continued on next page

�Checklist: Public Asymmetric Keys, continued

Number�Question��2. �For those public keys protected by operating system controls in your implementation,

describe those controls;

describe the process by which the controls are applied and enforced, and

describe when the steps of application and enforcement of controls occur in the life cycle of the public keys.��3.�For those public keys protected by message authentication codes in your implementation,

describe the message authentication techniques used;

describe any assumptions on which their cryptographic strength is based;

describe the process by which the message authentication codes are generated and verified;

describe when the steps of generation and verification of the message authentication codes occur in the life cycle of the public keys; and

describe how the message authentication keys involved in those techniques are managed.��4.�For those public keys protected by digital signatures (certificates) in your implementation,

describe the digital signature techniques used;

describe any assumptions on which their cryptographic strength is based;

describe the process by which the digital signatures are generated and verified;

describe when the steps of generation and verification of the digital signatures occur in the life cycle of the public keys, and

describe how the signature generation and verification keys involved in those techniques are managed.��Continued on next page

�Checklist: Public Asymmetric Keys, continued

Number�Question��5.�For those public keys that are protected by other techniques, describe the other techniques in detail and provide justification that the method chosen is both suitable and adequate for this particular application.��6.�There are a number of issues that may affect the security of the SET application in the way that public keys are protected irrespective of the method used. These issues include the following:

Are the data integrity mechanisms applied to the public key and its attributes together?

Is the strength of the integrity mechanism adequate for the class of key being protected?

If public keys are cached, are the proper cryptographic safeguards provided to ensure the integrity of public keys and attributes even if these properties are not checked again before use?

To what extent are these issues a concern for the security of your application? Describe how any such issues are addressed in your application.��

�Checklist: Private Asymmetric Keys

Number�Question��1.�For each private asymmetric key in SET, indicate below what method or methods are used to protect it from disclosure or modification.

The valid options are:

operating system controls (OSC)

symmetric encryption (SE)

asymmetric encryption (AE)

message authentication codes (MAC)

digital signatures (DS)

some other mechanism, or

not applicable; for example, for keys not handled by the implementation.��

Private Asymmetric Key��OSC�SE�AE�MAC�DS�Other�N/A��Cardholder message signature��(�(�(�(�(�(�(��Merchant message signature��(�(�(�(�(�(�(��Merchant key-exchange��(�(�(�(�(�(�(��Payment gateway message signature��(�(�(�(�(�(�(��Payment gateway key-exchange��(�(�(�(�(�(�(��Cardholder CA message signature��(�(�(�(�(�(�(��Cardholder CA key-exchange��(�(�(�(�(�(�(��Cardholder CA certificate��(�(�(�(�(�(�(��Merchant CA message signature��(�(�(�(�(�(�(��Merchant CA key-exchange��(�(�(�(�(�(�(��Merchant CA certificate��(�(�(�(�(�(�(��Payment gateway CA message signature��(�(�(�(�(�(�(��Payment gateway CA key-exchange��(�(�(�(�(�(�(��Payment gateway CA certificate issuing��(�(�(�(�(�(�(��Payment gateway CA CRL��(�(�(�(�(�(�(��Geo-political CA certificate issuing��(�(�(�(�(�(�(��Geo-political CA CRL��(�(�(�(�(�(�(��Brand CA certificate��(�(�(�(�(�(�(��Brand CA CRL��(�(�(�(�(�(�(��Root CA certificate��(�(�(�(�(�(�(��Root CA CRL��(�(�(�(�(�(�(��Continued on next page

�Checklist: Private Asymmetric Keys, continued

Number�Question��2.�For those private asymmetric keys protected by operating system controls in your implementation,

describe those controls,

describe the process by which the controls are applied and enforced, and

describe when the steps of application and enforcement of controls occur in the life cycle of the public keys.��3.�For those private asymmetric keys protected by symmetric encryption techniques in your implementation,

describe the symmetric encryption techniques used,

describe any assumptions on which their cryptographic strength is based;

describe the process by which the symmetric encryption is performed;

describe when the steps of encryption and decryption of the private asymmetric key occur in the life cycle of the keys, and

describe how the secret keys involved in the symmetric encryption mechanisms are themselves managed.��4.�For those private asymmetric keys protected by asymmetric encryption techniques in your implementation,

describe the asymmetric encryption techniques used;

describe any assumptions on which their cryptographic strength is based;

describe the process by which the asymmetric encryption is performed;

describe when the steps of encryption and decryption of the private asymmetric key occur in the life cycle of the keys, and

describe how the encryption and decryption keys involved in the asymmetric encryption mechanisms are themselves managed.��Continued on next page

�Checklist: Private Asymmetric Keys, continued

Number�Question��5.�For those private asymmetric keys protected by message authentication codes in your implementation,

describe the message authentication techniques used;

describe any assumptions on which their cryptographic strength is based;

describe the process by which the message authentication codes are generated and verified;

describe when the steps of generation and verification of the message authentication codes occur in the life cycle of the keys, and

describe how the message authentication keys involved in those techniques are managed.��6.�For those private asymmetric keys that are protected by digital signatures (certificates) in your implementation,

describe the digital signature techniques used;

describe any assumptions on which their cryptographic strength is based;

describe the process by which the digital signatures are generated and verified;

describe when the steps of generation and verification of the digital signatures occur in the life cycle of the keys, and

describe how the signature generation and verification keys involved in these digital signature techniques are themselves managed.��7.�For those private asymmetric keys that are protected by techniques not directly listed in the table above, describe these other techniques in detail and provide justification that the method chosen is both suitable and adequate for this particular application.��

�Checklist: Secret Symmetric Keys

Number�Question��1.�For each secret symmetric key in SET, indicate how it is protected from disclosure or modification. List all assumptions on which the claimed protection is based. Use the questions and tables provided in this Appendix as a guide. Note that in the expected environment of a SET implementation secret DES and CDMF keys are expected to be used once only on a per-message basis, so many of the issues pertinent to the protection of private asymmetric keys are unlikely to be applicable to this particular class of keys.��

�Checklist: All Cryptographic Keys

Number�Question��1.�If keys are shared among multiple applications, what techniques are in place to control key usage to avoid weaknesses arising from interactions between multiple uses? Even though one application might be internally consistent in its use of keys, are there any conflicts with another application?��2.�If secret-sharing techniques, or other threshold techniques such as signature sharing, are used to protect and control access to some cryptographically sensitive quantity, describe the exact circumstances under which the secret can be reconstructed or operations with the sensitive quantity can be performed. Justify the particular choice of access structure used and supply supporting documentation for the belief that the technique chosen offers adequate safeguards.��

�Checklist: Sensitive Data

Number�Question��1.�For each sensitive data item in SET, describe how the required protection is achieved, listing all assumptions on which the claimed protection is based. Among the data items that should be considered sensitive are:

key identification information;

the value of counters;

sensitive personal or purchase related data; and

the intermediate results from all computations.��2.�Indicate the methods by which sensitive data is protected in your implementation. Among the methods that should be considered are:

operating system controls;

symmetric encryption;

asymmetric encryption;

message authentication codes;

digital signatures, and

storage in secure memory.��3.�When sensitive data items are not protected by the techniques listed above, describe in detail the techniques that you have used in your particular application and provide justification that the method chosen is both suitable and adequate for this particular application.��

�Checklist: Memory Leakage

Number�Question��1.�Complete the following checklist.��

��yes�no��Is all data related to a cryptographic operation treated as being potentially sensitive?��(�(��Is both memory allocated from the heap and memory allocated on the stack zeroized?��(�(��Are all registers zeroized before the process exits?��(�(��Is memory zeroized as soon as the data stored in it is no longer needed?��(�(��Is zeroization done with a procedure call which the compiler will not eliminate?��(�(��Do all returns from a procedure pass through a common exit that zeroizes memory?��(�(��Is memory containing sensitive data “locked’ to prevent it from being swapped to a disk file, in a virtual memory system, if that disk file could later be examined by an opponent?��(�(��If memory need to be swapped, is it encrypted first with a key that remains in processor memory?��(�(��

2.�If you answer “no” to any of the above questions quantify and summarize the effect of this divergence from the general guidelines and their application to SET.��3.�Provide full and thorough documentation on the way in which errors are handled within a SET application, and their potential impact on memory leakage.��4.�Describe any techniques that have been used as safeguards (for instance, scrambling memory containing sensitive data by encrypting with a key stored elsewhere in memory) against failure in the assumption that process memory is private.��

�Appendix R�Root Key

Root Key

Publication Note�As of the publication date of this specification, the Root Key has not yet been generated.

This appendix will be updated with the value of the Root Key and other authentication information as soon as it is available.��Continued on next page

�Root Key, continued

�This page reserved for Root key information.��

�Appendix S�Variations

Supported Variations

Overview�This appendix describes high-level processing variations (for example, optional cardholder certificates) that may exist in systems that support SET, in order to satisfy different business models and operating guidelines established by the brand, Acquirer, and merchant.

SET is designed to accommodate the following variations.��

Cardholder certificates�For supporting initial acceptance, it was agreed that cardholder certificates may be optional at the discretion of an individual payment card brand.

Cardholder certificates will be required in the future: �The optional nature of the cardholder certificate is provided for initial implementation and acceptance only.

The payment gateway certificate will include an indicator as to whether a cardholder certificate is required for the selected BrandID; this will allow cardholder and payment gateway software to ensure a certificate is included with the purchase request when required. This approach also means that only payment gateways needed to be notified, via their certificates, when brand policies regarding the necessity of cardholder certificate changes.��

Tunneled messages�Depending upon the operating guidelines specified by the brand, some brands may require the capability to send information back to cardholder via the merchant. This feature is intended for Issuers to communicate back to cardholders about the reason that a transaction is being declined or to request that the cardholder call the Issuer.��

Capture token�Whether or not capture tokens are used depends on the business model and policy of the Acquirer. In addition, there are many variations in the business processing that can take place between the merchant and Acquirer depending upon their relationship and operating guidelines specified by the brand. A capture token may be included by the payment gateway when generating the AuthRes message.��Continued on next page

�Supported Variations, continued

Returning PAN�Depending upon the relationship between the merchant and Acquirer and operating guidelines specified by the brand, this is an optional field that may be included by the Acquirer in several response messages to the merchant, if and only if, the merchant’s certificate indicates it is authorized to receive cardholder’s information. Merchants may include the PAN using “extra encryption” in the capture and credit messages and their reversals.��

Batch capture processing�Depending upon the relationship between the Merchant and Acquirer, the Merchant can request capture processing for a batch of capture items to be processed together.��

Split shipments, recurring, and installment payments�Subsequent authorizations due to split shipments originate from the merchant; recurring payments originate from the cardholder. The authorization response and authorization reversal response messages may contain an optional authorization token that the merchant can use for subsequent authorizations to support both split shipments and recurring payments. This variation in payment processing has implications on the order information and payment instructions and the hash computations performed by the cardholder and merchant.��

Certificate and CRL signing�A CA may choose to use the same signature certificate to sign the certificates and CRLs that it generates, or may choose to use separate signature certificates for these two activities. When a separate certificate is used to sign CRLs, the BasicConstraints.cA field in this signature certificate is set to false and the KeyUsage field is set to 6. The complementary certificate used to sign certificates has BasicConstraints.cA set to true and KeyUsage set to 5.��

�Variations Not Addressed By SET

Variations outside the scope of SET�The variations in the table below are solely at the discretion of the brand or the financial institution, and SET makes neither provisions nor recommendations for them.��

Certificate request verification�The method used to verify the information provided in a request for a SET certificate is specific to each financial institution’s policies.��Certificate inquiry retention period�The maximum retention period for certificate authorities to re-send certificates in response to a certificate inquiry request message may vary according to system configuration dependencies.��SET initiation mechanism�The mechanism used to initiate a SET certificate or payment request transaction may varying depending on the network transport.��Communication of shopping-related information�The method used by the Cardholder and Merchant to accumulate the order description, its format and exchange mechanism is specific to the shopping application.��Confidentiality of purchase information�The protection of the purchase information (such as order description) using channel encryption mechanisms such as SSL.��

�Appendix T�Private Key and Certificate Duration

Overview

Introduction�The cryptoperiods for both certificate and private key durations are examples of security-related system configuration parameters that need to be considered when deploying SET systems.��

Constraint�The private key associated with the certificate should expire before the certificate expires, allowing the public key in the certificate to be used to verify signatures after the private key has expired.��

�Private key duration

Example�� REF _Ref389618334 * MERGEFORMAT �Table 80� provides an example for maximum private-key duration.��

Entity�Signature�Key-Encipherment�Certificate Signature�CRL

Signature��Cardholder�3 years�����Merchant�1 year�1 year����Payment Gateway�1 year�1 year����Cardholder CA�1 year�1 year�1 year���Merchant CA�1 year�1 year�1 year���Payment Gateway CA�1 year�1 year�1 year�1 year��Geopolitical CA�1 year�1 year�1 year�1 year��Brand CA�1 year�1 year�1 year�1 year��Root CA�1 year�1 year�1 year�1 year��Table � SEQ Table * ARABIC �80�: Private Key Duration Example

Continued on next page

�Private key duration, continued

Example�� REF _Ref389618400 * MERGEFORMAT �Table 81� provides an example for maximum certificate duration.��

Entity�Signature�Key-Encipherment�Certificate Signature�CRL Signature��Cardholder�3 years�����Merchant�1 year�1 year����Payment Gateway�1 year�1 year����Cardholder CA�1 year�1 year�4 years���Merchant CA�1 year�1 year�2 years���Payment Gateway CA�1 year�1 year�2 years�2 years��Geopolitical CA���5 years�2 years��Brand CA���6 years�2 years��Root CA���7 years�2 years��Table � SEQ Table * ARABIC �81�: Certificate Duration Example

�Duration Scenarios

Example�The following charts are examples of how the maximum duration for private keys and certificates is determined. The private-key duration Scenario takes the maximum private-key duration periods stated above, and maps the duration if each CA issues a certificate to an End Entity on the last day that the CA’s private key can be used for signing a certificate.

The Certificate Duration Scenario maps the required certificate duration required to meet the certificate chain validation criteria, based on the given private-key duration.��

Private Key Duration Scenario���Years��Entity�1�2�3�4�5�6�7��Root CA���������Brand CA���������Geopolitical CA���������Cardholder CA���������Cardholder���������Merchant CA���������Merchant���������Payment Gateway CA���������Payment Gateway���������

Certificate Duration Scenario���Years��Entity�7�6�5�4�3�2�1��Root CA���������Brand CA���������Geopolitical CA���������Cardholder CA���������Cardholder���������Merchant CA���������Merchant���������Payment Gateway CA���������Payment Gateway���������

�Appendix U�Certificate Examples

Introduction

Purpose�This appendix includes an example cardholder certificate.��

Format�For each message, the following information is provided:

The data structures/fields name. Preceding dots (.) are used to show nesting.

The content where applicable. (If the Data Structures/Fields is a construct, the contents octet(s) are not shown.)

DER encoding. ��

�Cardholder Certificate

�This is a UnsignedCertificate data structure. The total length of the data structure is 693 bytes.��

Data Structures/Fields�Content�DER encoding��UnsignedCertificate��30 82 02 B1��.version�ver3(2)�a0 03 02 01 02��.serialNumber�22�02 01 16��.signature��30 0d��..algorithm�id-sha1-with-rsa-signature�06 09 2a 86 48 86 f7 0d �01 01 05��..parameters�null�05 00��.issuer ��30 41��..countryName��31 0B 30 09��...type�id-at-countryName�06 03 55 04 06��...value�US�13 02 55 53��..organizationName��31 0E 30 0C��...type�id-at-organizationName�06 03 55 04 0A��...value�Brand�13 05 42 72 61 6E 64��..organizationUnitName��31 22 30 20��...type�id-at-organizationUnitName�06 03 55 04 0B��...value�Cardholder Certificate CA�13 19 43 61 72 64 68 6F �6C 64 65 72 20 43 65 72 �74 69 66 69 63 61 74 65 �20 43 41��.validity��30 1e��..notBefore�961126222439Z�17 0d 39 36 31 31 32 36 �32 32 32 34 33 39 5a��..notAfter�971126235900Z�17 0d 39 37 31 31 32 36 �32 33 35 39 30 30 5a��.subject ��30 53��..countryName��31 0B 30 09��....type�id-at-countryName�06 03 55 04 06��....value�US�13 02 55 53��..organizationName��31 0E 30 0C��...type�id-at-organizationName�06 03 55 04 0A��...value�Brand�13 05 42 72 61 6E 64��..organizationUnitName��31 0D 30 0B��...type�id-at-organizationUnitName�06 03 55 04 0B��...value�Bank�13 04 42 61 6E 6B��..commonName��31 25 30 23��...type�id-at-commonName�06 03 55 04 06��...value��13 1c 43 61 72 64 68 6F �6C 64 65 72 39 39 39 39 �39 39 30 31 32 33 34 35 �36 37 38 38 43 65 ��Continued on next page

�Cardholder Certificate, continued

Data Structures/Fields�Content�DER encoding��.subjectPublicKeyInfo��30 82 01 22��..algorithm��30 0d��...algorithm�id-rsaEncryption�06 09 2a 86 48 86 f7 0d �01 01 01��...parameters�null�05 00��..subjectPublicKey��03 82 01 0f 00 30 82 01 �0a 02 82 01 01 �00 ac 0b 1d 55 77 4d 23 �de f7 0a 26 c6 be 64 9e �9c 4f 0e b6 9b d2 19 43 �95 3a 86 a0 d1 9a d4 ff �99 63 0d a3 f5 68 7d 5e �f5 6c 9e 34 f5 ed 75 5c �47 fb 53 fe 9f 92 f0 e5 �ce 95 60 44 ec d0 ba 25 �a6 1f d1 65 7a be b0 4d �d6 85 97 ab 7d 2c ae fa �59 71 a1 ae 3c cd e9 df �33 27 39 02 36 83 8e ae �ab 8c 3f a0 c7 61 8d 78 �22 24 cd 46 a1 25 84 43 �b1 f7 5f b5 78 73 ee 1a �3e 4d d1 bb ba 06 64 d1 �a4 fd 67 65 4d 06 f9 ca �28 ad 24 76 e3 99 7b 5f �d1 a8 a0 3d 73 45 ab 52 �30 53 02 1d 61 12 f1 f5 �ca 94 97 fe 5c 15 da f3 �4a b0 5b 1f 9b 65 54 09 �4a c1 eb ae d1 b7 6d e2 �47 34 b5 c1 a1 49 a2 2d �a5 76 f2 bd 02 0d d5 ff �9c 40 0e 34 cb a2 b1 d8 �b0 bf 2c 2e 9b 11 c5 dd �bb a6 5a 21 37 78 33 32 �d3 db 09 04 21 1f 65 04 �25 fc cb a4 91 14 a4 09 �e7 81 99 bd cf 4a c3 45 �57 7e 59 b9 ae db f5 74 �a5 �02 03 01 00 01��Continued on next page

�Cardholder Certificate, continued

Data Structures/Fields�Content�DER encoding��.extensions��a3 81 b9 30 81 b6��..keyUsage��30 0E��...extrnID�id-ce-keyUsage�06 03 55 1D 0F��...critical�TRUE�01 01 ff��...extnValue�

digitalSignature(0)�04 04 �03 02 01 80��..privateKeyUsagePeriod��30 2B��...extrnID�id-ce-privateKeyUsagePeriod�06 03 55 1d 10��...extnValue��04 24 30 22��....notBefore�19961126221453Z�80 0f 31 39 39 36 31 31 �32 36 32 32 31 34 35 33 �5a��....notAfter�19970826221453Z�81 0f 31 39 39 37 30 38 �32 36 32 32 31 34 35 33 �5a��..certificatePolicies��30 14��...extrnID�id-ce-certificatePolicies�06 03 55 1D 20��...critical�TRUE�01 01 FF��...extnValue��04 0A 30 08 30 06 ��....policyIdentifier�id-set-setQualifier�06 04 70 2A 07 06��..certificateType��30 10��...extrnID�id-set-certificateType�06 04 70 2A 07 01��...critical�TRUE�01 01 ff��...extnValue��04 05���card(0)�03 03 07 80 00��..basicConstraints��30 0A��...extrnID��06 03 55 1D 13��...critical�TRUE�01 01 FF��...extnValue��04 00��..authorityKeyIdentifier��30 43��...extrnID��06 03 55 1D 23��...extnValue��04 3C 30 3A��....authorityCertIssuer��A1 34 ��.....directoryName��A4 32 30 30��......countryName��31 0B 30 09��......type�id-at-countryName�06 03 55 04 06��......value�US�13 02 55 53��.....organizationName��31 0E 30 0C��......type�id-at-organizationName�06 03 55 04 0A��......value�Brand�13 05 42 72 61 6E 64��.....organizationUnit�Name��31 11 30 0F��......type�id-at-organizationUnitName�06 03 55 04 0B��......value�Brand CA�13 08 42 72 61 6E 64 20 �43 41��....authorityCertSerial�Number�4660�82 02 12 34��

�Appendix V�Message Examples

Introduction

Example messages�This appendix includes examples of the following constructs:

PInitReq

PInitResData

InqReqData

OIData

PIData

PResData

AuthReqData

AuthResData

AuthRevReqData

AuthRevResData

CapReqData

CapResData

CapRevData

CapRevResData

CredReqData

CredResData

CredRevReqData

CredRevResData

PCertReqData

PCertResTBS

BatchAdminReqData

BatchAdminResData

CardCInitReq

CardCInitResTBS

Me-AqCInitReq

Me-AqCInitResTBS

RegFormReqData

RegFormTBS

CertReqData

CertResData

CertInqReqTBS

ErrorTBS��

Format�For each message, the following information is provided:

The Data Structures/Fields name. Preceding dots (.) are used to show nesting.

The content where applicable. (If the Data Structures/Fields is a construct, the contents octet(s) are not shown.)

DER encoding. ��

�PInitReq

�This is a PInitReq message. The total length of the message is 214 bytes.��

Data Structures/Fields�Content�DER encoding��MessageWrapper��30 81 d3��.header��30 5d��..version�setVer1(1)�02 01 01��..revision�0�02 01 00��..date�19970514041853Z�18 0f 31 39 39 37 30 35 �31 34 30 34 31 38 35 33 �5a��..messageIDs��a0 16 ��...localID-C��80 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..rrpid��81 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..swIdent�SET Specification v1.0�1a 16 53 45 54 20 53 70 �65 63 69 66 69 63 61 74 �69 6F 6E 20 76 31 2E 30��.message��a0 72��..purchaseInitRequest��a0 81 6f 30 6D��...rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��...language�en�1a 03 65 6e 20��...localID-C���04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...chall-C��04 14 88 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��...brandID�Brand:Product�1a 0D 42 72 61 6e 64 3a �50 72 6f 64 75 63 74��...bin�999999�12 06 39 39 39 39 39 39��...thumbs��a1 0d 30 0b��....digestAlgorithm��30 09��.....algorithm�id-sha1�06 05 2b 0e 03 02 1a��.....parameters�null�05 00��

�PInitResData

�This is a PInitResData data structure to be signed in the PInitRes message. The total length of the data structure is 189 bytes.��

Data Structures/Fields�Content�DER encoding��PInitResData��30 81 ba��.transIDs��30 42��..localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��..pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��..language�en�1a 03 65 6e 20��.rrpid��04 14 c9 36 c4 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.chall-C��04 14 ca 36 c4 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��. peThumbs��a1 23 30 21��..digestAlgorithm��30 09��...algorithm�id-sha1�06 05 2b 0e 03 02 1a��...parameters�null�05 00��..thumbprint��04 14 a6 a3 30 4c bc 0e �be 1f 85 a9 56 14 77 7d �8d 25 1f ef 06 02��.thumbs��a2 0d 30 0b��..digestAlgorithm��30 09 ��...algorithm�id-sha1�06 05 2b 0e 03 02 1a��...parameters�null�05 00��

�InqReqData

�This is an InqReqData data structure to be signed/included in the InqReq message. The total length of the data structure is 114 bytes.��

Data Structures/Fields�Content�DER encoding��InqReqData��30 70��.transIDs��30 42��..localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��..pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��..language�en �1A 03 65 6e 20��.rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.chall-C2��04 14 cb 37 d4 14 62 62 �63 64 65 66 67 68 69 6a �6c 6c 6d 6e 6f 70��

�OIData

�This is an OIData data structure to be included in the PReq message. The total length of the data structure is 220 bytes.��

Data Structures/Fields�Content�DER encoding��OIData��30 81 D9��.transIDs��30 42��..localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��..pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��..language�en �1A 03 65 6e 20��.rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.chall-C��04 14 ca 36 c4 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.hod��30 2C��..ddVersion�ddVer0(0)�02 01 00��..digestAlgorithm��30 09��...algorithm�id-sha1�06 05 2b 0e 03 02 1a��...parameters�null�05 00��..contentInfo��30 06��...contentType�id-set-content-OIData�06 04 70 2A 00 04��..digest��04 14 fb 7c c8 2f 80 b3 �00 86 d2 60 84 29 36 69 �05 70 cd cb 61 03��.odSalt��04 14 d2 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.chall-M��04 14 d3 66 cF 65 62 63 �73 54 75 66 57 69 19 6e �60 2c 4d 2e 6f 10��.brandID�Brand:Product�1a 0D 42 72 61 6e 64 3a �50 72 6f 64 75 63 74��

�PIData

�This is a PIData data structure to be encrypted in the PReq message. The total length of the data structure is 299 bytes.��

Data Structures/Fields�Content�DER encoding��PIData��30 82 01 27��.piHead��30 81 DC��..transIDs��30 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�en �1A 03 65 6e 20��..inputs��30 3B��...hod��30 2C��....ddVersion�ddVer0(0)�02 01 00��....digestAlgorithm��30 09��.....algorithm�id-sha1�06 05 2b 0e 03 02 1a��.....parameters�null�05 00��....contentInfo��30 06��.....contentType�id-set-content-HODInput�06 04 70 2a 00 08��....digest��04 14 fb 7c c8 2f 80 b3 �00 86 d2 60 84 29 36 69 �05 70 cd cb 61 03��...purchAmt��30 0b��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��..merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..transStain��04 14 18 29 34 4d 58 69 �74 2d 38 49 24 d2 86 96 �46 d2 88 79 74 3d��..swIdent�SET Specification v1.0�1a 16 53 45 54 20 53 70 �65 63 69 66 69 63 61 74 �69 6F 6E 20 76 31 2E 30��..acqBackInfo��a1 1f 30 1d��...backAlgID��30 11��....algorithm�id-desCBC�06 05 2b 0e 03 02 07��....parameters��04 08 ce 64 61 62 63 64 �65 66��...backKey��04 08 42 52 69 1f 4c a7 �9b 0e��Continued on next page

��styleref "Map Title"�PIData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER Encoding��.panData��30 46��..pan�9999990123456788�12 10 39 39 39 39 39 39 �30 31 32 33 34 35 36 37 �38 38��..cardExpiry�199901�12 06 31 39 39 39 30 31��..panSecret��04 14 70 61 6e 73 65 63 �72 65 74 70 61 6e 73 65 �63 72 65 74 70 61��..exNonce��04 14 d3 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��

�PResData

�This is a PResData data structure to be signed the PRes message. The total length of the data structure is 178 bytes.��

Data Structures/Fields�Content�DER encoding��PResData��30 81 af��.transIDs��30 42��..localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��..pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��..language�en �1a 03 65 6e 20��.rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.chall-C��04 14 ca 36 c4 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.pResPayloadSeq��30 3D 30 3B��..completionCode�capturePerformed(4)�0a 01 04��..results��30 36��...authStatus��A1 19��....authDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��....authCode�approved(0)�0a 01 00��....authRatio�1�09 03 80 00 01��...capStatus��A2 19��....capDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��....capCode�success(0)�0a 01 00��....capRatio�1�09 03 80 00 01��

�AuthReqData

�This is an AuthReqData data structure to be encrypted in the AuthReq message. The total length of the data structure is 258 bytes.��

Data Structures/Fields�Content�DER encoding��AuthReqData��30 81 FF��.authReqItem��30 81 FC��..authTags��30 7B��...authRRTags��30 35��....rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��....merTermIDs��30 0C��.....merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��....currentDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...transIDs��30 42��....localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��....xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��....pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��....language�en �1a 03 65 6e 20��..checkDigests��A0 5C��...hOIData��30 2C��....ddVersion�ddVer0(0)�02 01 00��....digestAlgorithm��30 09��.....algorithm�id-sha1�06 05 2b 0e 03 02 1a��.....parameters�null�05 00��....contentInfo��30 06��.....contentType�id-set-content-OIData�06 04 70 2A 00 04��....digest��04 14 8F 34 3E AC 28 EB �BF 6C B0 38 CD C0 93 79 �E1 23 70 85 3C A2��...hod2��30 2C��....ddVersion�ddVer0(0)�02 01 00��....digestAlgorithm��30 09��.....algorithm�id-sha1�06 05 2b 0e 03 02 1a��.....parameters�null�05 00��....contentInfo��30 06��.....contentType�id-set-content-HODInput�06 04 70 2A 00 08��....digest��04 14 FB 7C C8 2F 80 B3 �00 86 D2 60 84 29 36 69 �05 70 CD CB 61 03��Continued on next page

��styleref "Map Title"�AuthReqData�, continued

�styleref "Block Label"�DER encoding� (continued)������Data Structures/Fields�Content�DER encoding��..mThumbs��A1 0B��...digestAlgorithm��30 09��....algorithm�id-sha1�06 05 2b 0e 03 02 1a��....parameters�null�05 00��..authReqPayload��30 12��...subsequentAuthInd�FALSE�01 01 00��...authReqAmt��30 0B��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��...merchData��30 00��

�AuthResData

�This is an AuthResData data structure to be encrypted in the AuthRes message. The total length of the data structure is 163 bytes.��

Data Structures/Fields�Content�DER encoding��AuthResData��30 81 A0��.authTags��30 7B��..authRRTags��30 35��...rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��...merTermIDs��30 0C��....merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��...currentDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��..transIDs��30 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�en �1a 03 65 6e 20��.authResPayload��30 21��..authHeader��30 1F��...authAmt��30 0B��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��...authCode�approved(0)�0a 01 00��...responseData��30 0D��....authValCodes��A0 08��.....approvalCode�567891�80 06 35 36 37 38 39 31��....respReason�issuer(0)�81 01 00��

�AuthRevReqData

�This is an AuthRevReqData data structure to be encrypted in the AuthRevReq message. The total length of the data structure is 354 bytes.��

Data Structures/Fields�Content�DER encoding��AuthRevReqData�@826�30 82 01 5E��.authRevTags��30 37��..authRevRRTags��30 35��...rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��...merTermIDs��30 0C��....merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��...currentDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��.AuthReqData��A1 81 FF��..authReqItem��30 81 FC��...authTags��30 7B��....authRRTags��30 35��.....rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.....merTermIDs��30 0C��......merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��.....currentDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��....transIDs��30 42��.....localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��.....xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��.....pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��.....language�en �1a 03 65 6e 20��...checkDigests��A0 5C��....hOIData��30 2C��.....ddVersion�ddVer0(0)�02 01 00��.....digestAlgorithm��30 09��......algorithm�id-sha1�06 05 2b 0e 03 02 1a��......parameters�null�05 00��.....contentInfo��30 06��......contentType�id-set-content-OIData�06 04 70 2A 00 04��.....digest��04 14 8F 34 3E AC 28 EB �BF 6C B0 38 CD C0 93 79 �E1 23 70 85 3C A2��Continued on next page

��styleref "Map Title"�AuthRevReqData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��....hod2��30 2C��.....ddVersion�ddVer0(0)�02 01 00��......digestAlgorithm��30 09��......algorithm�id-sha1�06 05 2b 0e 03 02 1a��......parameters�null�05 00��.....contentInfo��30 06��......contentType�id-set-content-HODInput�06 04 70 2A 00 08��.....digest��04 14 FB 7C C8 2F 80 B3 �00 86 D2 60 84 29 36 69 �05 70 CD CB 61 03��...mThumbs��A1 0B��....digestAlgorithm��30 09��.....algorithm�id-sha1�06 05 2b 0e 03 02 1a��.....parameters�null�05 00��...authReqPayload��30 12��....subsequentAuthInd�FALSE�01 01 00��....authReqAmt��30 0B��.....currency�840(US)�02 02 08 40��.....amount�3059�02 02 0b b3��.....amtExp10�-2�02 01 fe��....merchData��30 00��.authResPayload��A2 21��..authHeader��30 1F��...authAmt��30 0B��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��...authCode�approved(0)�0a 01 00��...responseData��30 0D��....authValCodes��A0 08��.....approvalCode�567891�80 06 35 36 37 38 39 31��....respReason�issuer(0)�81 01 00��

�AuthRevResData

�This is an AuthRevResData data structure to be encrypted in the AuthRevRes message. The total length of the data structure is 177 bytes.��

Data Structures/Fields�Content�DER encoding��AuthRevResData�@857�30 81 AE��.authRevTags��30 37��..authRevRRTags��30 35��...rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��...merTermIDs��30 0C��....merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��...currentDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��.authNewAmt��30 0A��..currency�840(US)�02 02 08 40��..amount�0�02 01 00��..amtExp10�0�02 01 00��.authResDataNew��30 67��..transIDs��30 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�en �1a 03 65 6e 20��..authResPayload��30 21��...authHeader��30 1F��....authAmt��30 0B��.....currency�840(US)�02 02 08 40��.....amount�3059�02 02 0b b3��.....amtExp10�-2�02 01 fe��....authCode�approved(0)�0a 01 00��....responseData��30 0D��.....authValCodes��A0 08��......approvalCode�567891�80 06 35 36 37 38 39 31��.....respReason�issuer(0)�81 01 00��

�CapReqData

�This is a CapReqData data structure to be encrypted in the CapReq message. The total length of the data structure is 477 bytes.��

Data Structures/Fields�Content�DER encoding��CapReqData��30 82 01 d9��.capRRTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.mThumbs��a0 0b 30 09 ��..digestAlgorithm��06 05 2b 0e 03 02 1a��..parameters�null�05 00��.capItemSeq��30 82 01 91 30 82 01 8D��..transIDs��30 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�19970509175416Z�1A 03 65 6e 20��..capPayload��30 82 01 45��...capDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...capReqAmt��30 0b��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��Continued on next page

��styleref "Map Title"�CapReqData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��...authReqItem��A0 81 FF 30 81 FC��....authTags��30 7B��.....authRRTags��30 35��......rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��......merTermIDs��30 0C��.......merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��......currentDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��.....transIDs��30 42��......localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��......xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��......pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��......language�en �1a 03 65 6e 20��....checkDigests��A0 5C��.....hOIData��30 2C��......ddVersion�ddVer0(0)�02 01 00��......digestAlgorithm��30 09��.......algorithm�id-sha1�06 05 2b 0e 03 02 1a��.......parameters�null�05 00��......contentInfo��30 06��.......contentType�id-set-content-OIData�06 04 70 2A 00 04��......digest��04 14 8F 34 3E AC 28 EB �BF 6C B0 38 CD C0 93 79 �E1 23 70 85 3C A2��.....hod2��30 2C��......ddVersion�ddVer0(0)�02 01 00��......digestAlgorithm��30 09��.......algorithm�id-sha1�06 05 2b 0e 03 02 1a��.......parameters�null�05 00��......contentInfo��30 06��.......contentType�id-set-content-HODInput�06 04 70 2A 00 08��......digest��04 14 FB 7C C8 2F 80 B3 �00 86 D2 60 84 29 36 69 �05 70 CD CB 61 03��....mThumbs��A1 0B��.....digestAlgorithm��30 09��......algorithm�id-sha1�06 05 2b 0e 03 02 1a��......parameters�null�05 00��Continued on next page

��styleref "Map Title"�CapReqData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��....authReqPayload��30 12��.....subsequentAuthInd�FALSE�01 01 00��.....authReqAmt��30 0B��......currency�840(US)�02 02 08 40��......amount�3059�02 02 0b b3��......amtExp10�-2�02 01 fe��.....merchData��30 00��...authResPayload��A1 23 30 21��....authHeader��30 1F��.....authAmt��30 0B��......currency�840(US)�02 02 08 40��......amount�3059�02 02 0b b3��......amtExp10�-2�02 01 fe��.....authCode�approved(0)�0a 01 00��.....responseData��30 0D��......authValCodes��A0 08��.......approvalCode�567891�80 06 35 36 37 38 39 31��......respReason�issuer(0)�81 01 00��

�CapResData

�This is a CapResData data structure to be encrypted in the CapRes message. The total length of the data structure is 152 bytes.��

Data Structures/Fields�Content�DER encoding��CapResData��30 81 95��.capRRTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.capResItemSeq��30 5C 30 5A��..transIDs��30 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�19970509175416Z�1A 03 65 6e 20��..capResPayload��30 14��...capCode�success(0)�0A 01 00��...capAmt��30 0B��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��...batchID�102�80 02 01 02��

�CapRevData

�This is a CapRevData data structure to be encrypted in the CapRevReq message. The total length of the data structure is 485 bytes.��

Data Structures/Fields�Content�DER encoding��CapRevData��A0 82 01 df 30 82 01 db��.capRevOrCredTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.capRevOrCredReqItems��30 82 01 a0 30 82 01 9C��..transIDs��A0 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�19970509175416Z�1A 03 65 6e 20��..capPayload��30 82 01 45��...capDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...capReqAmt��30 0b��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��...authReqItem��A0 81 FF 30 81 FC��....authTags��30 7B��.....authRRTags��30 35��......rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��......merTermIDs��30 0C��.......merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��......currentDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��Continued on next page

��styleref "Map Title"�CapRevData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��.....transIDs��30 42��......localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��......xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��......pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��......language�en �1a 03 65 6e 20��....checkDigests��A0 5C��.....hOIData��30 2C��......ddVersion�ddVer0(0)�02 01 00��......digestAlgorithm��30 09��.......algorithm�id-sha1�06 05 2b 0e 03 02 1a��.......parameters�null�05 00��......contentInfo��30 06��.......contentType�id-set-content-OIData�06 04 70 2A 00 04��......digest��04 14 8F 34 3E AC 28 EB �BF 6C B0 38 CD C0 93 79 �E1 23 70 85 3C A2��.....hod2��30 2C��......ddVersion�ddVer0(0)�02 01 00��......digestAlgorithm��30 09��.......algorithm�id-sha1�06 05 2b 0e 03 02 1a��.......parameters�null�05 00��......contentInfo��30 06��.......contentType�id-set-content-HODInput�06 04 70 2A 00 08��......digest��04 14 FB 7C C8 2F 80 B3 �00 86 D2 60 84 29 36 69 �05 70 CD CB 61 03��....mThumbs��A1 0B��.....digestAlgorithm��30 09��......algorithm�id-sha1�06 05 2b 0e 03 02 1a��......parameters�null�05 00��....authReqPayload��30 12��.....subsequentAuthInd�FALSE�01 01 00��.....authReqAmt��30 0B��......currency�840(US)�02 02 08 40��......amount�3059�02 02 0b b3��......amtExp10�-2�02 01 fe��.....merchData��30 00��Continued on next page

��styleref "Map Title"�CapRevData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��...authResPayload��A1 23 30 21��....authHeader��30 1F��.....authAmt��30 0B��......currency�840(US)�02 02 08 40��......amount�3059�02 02 0b b3��......amtExp10�-2�02 01 fe��.....authCode�approved(0)�0a 01 00��.....responseData��30 0D��......authValCodes��A0 08��.......approvalCode�567891�80 06 35 36 37 38 39 31��......respReason�issuer(0)�81 01 00��..capRevOrCredReqDate�19970509175417Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 37 �5a��

�CapRevResData

�This is a CapRevResData data structure to be encrypted in the CapRevRes message. The total length of the data structure is 148 bytes.��

Data Structures/Fields�Content�DER encoding��CapRevResData��30 81 91��.capRevOrCredTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.capRevOrCredResItems��30 58 30 56��..transIDs��A0 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�19970509175416Z�1A 03 65 6e 20��..capRevOrCredResPayload��30 10��...capRevOrCredCode�success(0)�02 01 00��...capRevOrCredActualAmt��30 0B��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��

�CredReqData

�This is a CredReqData data structure to be encrypted in the CredReq message. The total length of the data structure is 485 bytes.��

Data Structures/Fields�Content�DER encoding��CredReqData��A1 82 01 df 30 82 01 db��.capRevOrCredTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.capRevOrCredReqItems��30 82 01 a0 30 82 01 9C��..transIDs��A0 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�19970509175416Z�1A 03 65 6e 20��..capPayload��30 82 01 45��...capDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...capReqAmt��30 0b��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��...authReqItem��A0 81 FF 30 81 FC��....authTags��30 7B��.....authRRTags��30 35��......rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��......merTermIDs��30 0C��.......merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��......currentDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��Continued on next page

��styleref "Map Title"�CredReqData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��.....transIDs��30 42��......localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��......xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��......pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��......language�en �1a 03 65 6e 20��....checkDigests��A0 5C��.....hOIData��30 2C��......ddVersion�ddVer0(0)�02 01 00��......digestAlgorithm��30 09��.......algorithm�id-sha1�06 05 2b 0e 03 02 1a��.......parameters�null�05 00��......contentInfo��30 06��.......contentType�id-set-content-OIData�06 04 70 2A 00 04��......digest��04 14 8F 34 3E AC 28 EB �BF 6C B0 38 CD C0 93 79 �E1 23 70 85 3C A2��.....hod2��30 2C��......ddVersion�ddVer0(0)�02 01 00��......digestAlgorithm��30 09��.......algorithm�id-sha1�06 05 2b 0e 03 02 1a��.......parameters�null�05 00��......contentInfo��30 06��.......contentType�id-set-content-HODInput�06 04 70 2A 00 08��......digest��04 14 FB 7C C8 2F 80 B3 �00 86 D2 60 84 29 36 69 �05 70 CD CB 61 03��....mThumbs��A1 0B��.....digestAlgorithm��30 09��......algorithm�id-sha1�06 05 2b 0e 03 02 1a��......parameters�null�05 00��....authReqPayload��30 12��.....subsequentAuthInd�FALSE�01 01 00��.....authReqAmt��30 0B��......currency�840(US)�02 02 08 40��......amount�3059�02 02 0b b3��......amtExp10�-2�02 01 fe��.....merchData��30 00��Continued on next page

��styleref "Map Title"�CredReqData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��...authResPayload��A1 23 30 21��....authHeader��30 1F��.....authAmt��30 0B��......currency�840(US)�02 02 08 40��......amount�3059�02 02 0b b3��......amtExp10�-2�02 01 fe��.....authCode�approved(0)�0a 01 00��.....responseData��30 0D��......authValCodes��A0 08��.......approvalCode�567891�80 06 35 36 37 38 39 31��......respReason�issuer(0)�81 01 00��..capRevOrCredReqDate�19970509175417Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 37 �5a��

�CredResData

�This is a CredResData data structure to be encrypted in the CredRes message. The total length of the data structure is 148 bytes.��

Data Structures/Fields�Content�DER encoding��CredResData��30 81 91��.capRevOrCredTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.capRevOrCredResItems��30 58 30 56��..transIDs��A0 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�19970509175416Z�1A 03 65 6e 20��..capRevOrCredResPayload��30 10��...capRevOrCredCode�success(0)�02 01 00��...capRevOrCredActualAmt��30 0B��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��

�CredRevReqData

�This is a CredRevReqData data structure to be encrypted in the CredRevReq message. The total length of the data structure is 485 bytes.��

Data Structures/Fields�Content�DER encoding��CredRevReqData��A2 82 01 df 30 82 01 db��.capRevOrCredTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.capRevOrCredReqItems��30 82 01 a0 30 82 01 9C��..transIDs��A0 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�19970509175416Z�1A 03 65 6e 20��..capPayload��30 82 01 45��...capDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...capReqAmt��30 0b��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��...authReqItem��A0 81 FF 30 81 FC��....authTags��30 7B��.....authRRTags��30 35��......rrpid��04 14 d1 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��......merTermIDs��30 0C��.......merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��......currentDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��Continued on next page

��styleref "Map Title"�CredRevReqData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��.....transIDs��30 42��......localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��......xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��......pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��......language�en �1a 03 65 6e 20��....checkDigests��A0 5C��.....hOIData��30 2C��......ddVersion�ddVer0(0)�02 01 00��......digestAlgorithm��30 09��.......algorithm�id-sha1�06 05 2b 0e 03 02 1a��.......parameters�null�05 00��......contentInfo��30 06��.......contentType�id-set-content-OIData�06 04 70 2A 00 04��......digest��04 14 8F 34 3E AC 28 EB �BF 6C B0 38 CD C0 93 79 �E1 23 70 85 3C A2��.....hod2��30 2C��......ddVersion�ddVer0(0)�02 01 00��......digestAlgorithm��30 09��.......algorithm�id-sha1�06 05 2b 0e 03 02 1a��.......parameters�null�05 00��......contentInfo��30 06��.......contentType�id-set-content-HODInput�06 04 70 2A 00 08��......digest��04 14 FB 7C C8 2F 80 B3 �00 86 D2 60 84 29 36 69 �05 70 CD CB 61 03��....mThumbs��A1 0B��.....digestAlgorithm��30 09��......algorithm�id-sha1�06 05 2b 0e 03 02 1a��......parameters�null�05 00��....authReqPayload��30 12��.....subsequentAuthInd�FALSE�01 01 00��.....authReqAmt��30 0B��......currency�840(US)�02 02 08 40��......amount�3059�02 02 0b b3��......amtExp10�-2�02 01 fe��.....merchData��30 00��Continued on next page

��styleref "Map Title"�CredRevReqData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��...authResPayload��A1 23 30 21��....authHeader��30 1F��.....authAmt��30 0B��......currency�840(US)�02 02 08 40��......amount�3059�02 02 0b b3��......amtExp10�-2�02 01 fe��.....authCode�approved(0)�0a 01 00��.....responseData��30 0D��......authValCodes��A0 08��.......approvalCode�567891�80 06 35 36 37 38 39 31��......respReason�issuer(0)�81 01 00��..capRevOrCredReqDate�19970509175417Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 37 �5a��

�CredRevResData

�This is a CredRevResData data structure to be encrypted in the CredRevRes message. The total length of the data structure is 148 bytes.��

Data Structures/Fields�Content�DER encoding��CredRevResData��30 81 91��.capRevOrCredTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.capRevOrCredResItems��30 58 30 56��..transIDs��A0 42��...localID-C��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...xID��04 14 78 69 64 2d 78 69 �64 2d 78 69 64 2d 78 69 �64 2d 78 69 64 2d��...pReqDate�19970509175416Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 34 31 36 �5a��...language�en �1A 03 65 6e 20��..capRevOrCredResPayload��30 10��...capRevOrCredCode�success(0)�02 01 00��...capRevOrCredActualAmt��30 0B��....currency�840(US)�02 02 08 40��....amount�3059�02 02 0b b3��....amtExp10�-2�02 01 fe��

�PCertReqData

�This is a PCertReqData data structure to be signed in the PCertReq message. The total length of the data structure is 84 bytes.��

Data Structures/Fields�Content�DER encoding��PCertReqData��30 52��.pCertTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.brandIDSeq��30 19 30 17��..brandID�Brand:Product�1a 0D 42 72 61 6e 64 3a �50 72 6f 64 75 63 74��..bin�999999�12 06 39 39 39 39 39 39��

�PCertResTBS

�This is a PCertResTBS data structure to be signed in the PCertRes message. The total length of the data structure is 60 bytes.��

Data Structures/Fields�Content�DER encoding��PCertResTBS��30 3A��.pCertTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.pCertCode�success(0)�02 01 00��

�BatchAdminReqData

�This is a BatchAdminReqData data structure to be encrypted in the BatchAdminReq message. The total length of the data structure is 64 bytes.��

Data Structures/Fields�Content�DER encoding��BatchAdminReqData��30 3E��.batchAdminRRTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.batchID�103�80 02 01 03��.batchOperation�open(0)�82 01 00��

�BatchAdminResData

�This is a BatchAdminResData data structure to be encrypted in the BatchAdminRes message. The total length of the data structure is 64 bytes.��

Data Structures/Fields�Content�DER encoding��BatchAdminResData��30 3E��.batchAdminRRTags��30 35��..rrpid��04 14 d1 65 fb 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..merTermIDs��30 0C��...merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��..currentDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.batchID�103�02 02 01 03��.baStatus�success(0)�02 01 00��

�CardCInitReq

�This is a CardCInitReq message. The total length of the message is 100 bytes.��

Data Structures/Fields�Content�DER encoding��CardCInitReq��30 62��.rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.eeTags��30 2c��..localID-EE���04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..chall-EE��04 14 88 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.brandID�Brand:Product�1a 0D 42 72 61 6e 64 3a �50 72 6f 64 75 63 74��.thumbs��a0 0d 30 0b��..digestAlgorithm��30 09��...algorithm�id-sha1�06 05 2b 0e 03 02 1a��...parameters�null�05 00��

�CardCInitResTBS

�This is a CardCInitResTBS data structure to be signed in the CardCInitRes message. The total length of the data structure is 116 bytes.��

Data Structures/Fields�Content�DER encoding��CardCInitResTBS��30 72��.rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.eeTags��30 2c��..localID-EE���04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..chall-EE��04 14 88 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.caTags��30 2c��..lID-CA��80 14 7c 79 74 73 3d 7c �6a 65 64 2e 6d 6a 65 64 �1d 5c 59 54 53 1d��..chall-CA��04 14 18 ab 2d 4d 51 62 �62 64 67 76 77 18 29 3a �64 65 66 68 8f 90��

�Me-AqCInitReq

�This is a Me-AqCInitReq message. The total length of the message is 115 bytes.��

Data Structures/Fields�Content�DER encoding��Me-AqCInitReq��30 71��.rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.eeTags��30 2c��..localID-EE��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..chall-EE��04 14 88 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.requestType�merInitialSig(4)�02 01 04��.idData��A0 14��..merchantBIN�999999�12 06 39 39 39 39 39 39��..merchantID�MerchantID�13 0a 4d 65 72 63 68 61 �6e 74 49 44��.brandID�Brand:Product�1a 0D 42 72 61 6e 64 3a �50 72 6f 64 75 63 74��.language�en�1a 03 65 6e 20��

�Me-AqCInitResTBS

�This is a Me-AqCInitResTBS data structure to be signed in the Me-AqCInitRes message. The total length of the data structure is 256 bytes.��

Data Structures/Fields�Content�DER encoding��Me-AqCInitResTBS��30 81 FD��.rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.eeTags��30 2c��..localID-EE��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..chall-EE��04 14 88 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.caTags2��30 2c��..lID-CA��80 14 7c 79 74 73 3d 7c �6a 65 64 2e 6d 6a 65 64 �1d 5c 59 54 53 1d��..chall-CA��04 14 18 ab 2d 4d 51 62 �62 64 67 76 77 18 29 3a �64 65 66 68 8f 90��.requestType�merInitialSig(4)�02 01 04��.regFormOrReferral��A0 81 85��..reqTemplate��30 75��...regFormID�1�02 01 01��...brandLogoURL�http://www.brand.com/~SET/logo.gif�1A 22 68 74 74 70 3A 2F �2F 77 77 77 2E 62 72 61 �6E 64 2E 63 6F 6D 2F 7E �53 45 54 2F 6C 6F 67 6F �2E 67 69 66��...regFieldSeq��30 4C��....RegField��30 19��.....fieldID�{id-set-givenName 0}�80 05 70 2A 02 01 00��.....fieldName�First Name�1A 0A 46 69 72 73 74 20 �4E 61 6D 65��.....fieldLen�20�02 01 14��.....fieldRequired�TRUE�82 01 ff��....RegField��30 18��.....fieldID�{id-set-familyName 0}�80 05 70 2A 02 02 00��.....fieldName�Last Name�1A 09 4C 61 73 74 20 4E �61 6D 65��.....fieldLen�20�02 01 14��.....fieldRequired�TRUE�82 01 ff��....RegField��30 15��.....fieldID�{id-set-identificationNumber 1 840 0}�80 08 70 2A 02 05 01 86 �48 00��.....fieldName�SSN�1A 03 53 53 4E��.....fieldLen�9�02 01 09��.....fieldRequired�TRUE�82 01 ff��..policy�Brand Policy�1A 0C 42 72 61 6E 64 20 �50 6F 6C 69 63 79��

�RegFormReqData

�This is a RegFormReqData data structure to be encrypted in the RegFormReg message. The total length of the data structure is 124 bytes.��

Data Structures/Fields�Content�DER encoding��RegFormReqData��30 7A��.rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.requestType�cardInitialSig(1)�02 01 01��.eeTags��30 2c��..localID-EE��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..chall-EE��04 14 88 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.caTags2��30 2c��..lID-CA��80 14 7c 79 74 73 3d 7c �6a 65 64 2e 6d 6a 65 64 �1d 5c 59 54 53 1d��..chall-CA��04 14 18 ab 2d 4d 51 62 �62 64 67 76 77 18 29 3a �64 65 66 68 8f 90��.language�en�1A 03 65 6e 20��

�RegFormTBS

�This is a RegFormTBS data structure to be signed in the RegFormRes message. The total length of the data structure is 256 bytes.��

Data Structures/Fields�Content�DER encoding��RegFormTBS��30 81 Fd��.rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.eeTags2��30 2c��..localID-EE��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..chall-EE��04 14 88 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.caTags2��30 2c��..lID-CA��80 14 7c 79 74 73 3d 7c �6a 65 64 2e 6d 6a 65 64 �1d 5c 59 54 53 1d��..chall-CA��04 14 18 ab 2d 4d 51 62 �62 64 67 76 77 18 29 3a �64 65 66 68 8f 90��.requestType�cardInitialSig(1)�02 01 01��.formOrReferral��30 81 85��..reqTemplate��30 75��...regFormID�1�02 01 01��...brandLogoURL�http://www.brand.com/~SET/logo.gif�1A 22 68 74 74 70 3A 2F �2F 77 77 77 2E 62 72 61 �6E 64 2E 63 6F 6D 2F 7E �53 45 54 2F 6C 6F 67 6F �2E 67 69 66��...regFieldSeq��30 4C��....RegField��30 19��.....fieldID�{id-set-givenName 0}�80 05 70 2A 02 01 00��.....fieldName�First Name�1A 0A 46 69 72 73 74 20 �4E 61 6D 65��.....fieldLen�20�02 01 14��.....fieldRequired�TRUE�82 01 ff��....RegField��30 18��.....fieldID�{id-set-familyName 0}�80 05 70 2A 02 02 00��.....fieldName�Last Name�1A 09 4C 61 73 74 20 4E �61 6D 65��.....fieldLen�20�02 01 14��.....fieldRequired�TRUE�82 01 ff��....RegField��30 15��.....fieldID�{id-set-identificationNumber 1 840 0}�80 08 70 2A 02 05 01 86 �48 00��.....fieldName�SSN�1A 03 53 53 4E��.....fieldLen�9�02 01 09��.....fieldRequired�TRUE�82 01 ff��..policy�Brand Policy�1A 0C 42 72 61 6E 64 20 �50 6F 6C 69 63 79��

�CertReqData

�This is a CertReqData data structure to be encrypted in the CertReq message. The total length of the data structure is 503 bytes.��

Data Structures/Fields�Content�DER encoding��CertReqData��30 82 01 F3��.rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.requestType�cardInitialSig(1)�02 01 01��.requestDate�19970509175510Z�18 0f 31 39 39 37 30 35 �30 39 31 37 35 35 31 30 �5a��.eeTags3��30 2c��..localID-EE��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..chall-EE��04 14 88 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.caTags2��30 2c��..lID-CA��80 14 7c 79 74 73 3d 7c �6a 65 64 2e 6d 6a 65 64 �1d 5c 59 54 53 1d��..chall-CA��04 14 18 ab 2d 4d 51 62 �62 64 67 76 77 18 29 3a �64 65 66 68 8f 90��.regFormID�121�02 01 79��.regForm��30 3A��..RegFormItems��30 12��...fieldName�First Name�1A 0A 46 69 72 73 74 20 �4E 61 6D 65��...fieldValue�Tony�1A 04 54 6F 6E 79��..RegFormItems��30 12��...fieldName�Last Name�1A 09 4C 61 73 74 20 4E �61 6D 65��...fieldValue�Lewis�1A 05 4C 65 77 69 73��..RegFormItems��30 10��...fieldName�SSN�1A 03 53 53 4E��...fieldValue�111223333�1A 09 31 31 31 32 32 33 �33 33 33��Continued on next page

��styleref "Map Title"�CertReqData�, continued

�styleref "Block Label"�DER encoding� (continued)���

Data Structures/Fields�Content�DER encoding��.publicKeySorE��30 82 01 2A��..publicKeyS��A0 82 01 26 30 82 01 22��..algorithm��30 0d��...algorithm�id-rsaEncryption�06 09 2a 86 48 86 f7 0d �01 01 01��...parameters�null�05 00��..subjectPublicKey��03 82 01 0f �00 30 82 01 0a 02 82 01 �01 00 ac 0b 1d 55 77 4d �23 de f7 0a 26 c6 be 64 �9e 9c 4f 0e b6 9b d2 19 �43 95 3a 86 a0 d1 9a d4 �ff 99 63 0d a3 f5 68 7d �5e f5 6c 9e 34 f5 ed 75 �5c 47 fb 53 fe 9f 92 f0 �e5 ce 95 60 44 ec d0 ba �25 a6 1f d1 65 7a be b0 �4d d6 85 97 ab 7d 2c ae �fa 59 71 a1 ae 3c cd e9 �df 33 27 39 02 36 83 8e �ae ab 8c 3f a0 c7 61 8d �78 22 24 cd 46 a1 25 84 �43 b1 f7 5f b5 78 73 ee �1a 3e 4d d1 bb ba 06 64 �d1 a4 fd 67 65 4d 06 f9 �ca 28 ad 24 76 e3 99 7b �5f d1 a8 a0 3d 73 45 ab �52 30 53 02 1d 61 12 f1 �f5 ca 94 97 fe 5c 15 da �f3 4a b0 5b 1f 9b 65 54 �09 4a c1 eb ae d1 b7 6d �e2 47 34 b5 c1 a1 49 a2 �2d a5 76 f2 bd 02 0d d5 �ff 9c 40 0e 34 cb a2 b1 �d8 b0 bf 2c 2e 9b 11 c5 �dd bb a6 5a 21 37 78 33 �32 d3 db 09 04 21 1f 65 �04 25 fc cb a4 91 14 a4 �09 e7 81 99 bd cf 4a c3 �45 57 7e 59 b9 ae db f5 �74 a5 02 03 01 00 01��

�CertResData

�This is a CertResData data structure to be encrypted or signed in the CertRes message. The total length of the data structure is 153 bytes.��

Data Structures/Fields�Content�DER encoding��CertResData��30 81 96��.rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.eeTags3��30 2c��..localID-EE��04 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��..chall-EE��04 14 88 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.caTags3��30 2c��..lID-CA��80 14 7c 79 74 73 3d 7c �6a 65 64 2e 6d 6a 65 64 �1d 5c 59 54 53 1d��..chall-CA��04 14 18 ab 2d 4d 51 62 �62 64 67 76 77 18 29 3a �64 65 66 68 8f 90��.certStatus��30 22��..certStatusCode�requestComplete(1)�02 01 01��..nonceCCA��04 14 d3 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��..failedItems��30 07��...FailedItem��30 05��....itemNumber�0�02 01 00��....reason��1A 00��

�CertInqReqTBS

�This is a CertInqReqTBS data structure to be signed in the CertInqReq message. The total length of the data structure is 70 bytes.��

Data Structures/Fields�Content�DER encoding��CertInqReqTBS��30 44��.rrpid��04 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.caTags3��30 2c��..lID-CA��80 14 7c 79 74 73 3d 7c �6a 65 64 2e 6d 6a 65 64 �1d 5c 59 54 53 1d��..chall-CA��04 14 18 ab 2d 4d 51 62 �62 64 67 76 77 18 29 3a �64 65 66 68 8f 90��

�ErrorTBS

�This is an ErrorTBS data structure to be signed in the Error message. The total length of the data structure is 126 bytes.��

Data Structures/Fields�Content�DER encoding��ErrorTBS��30 7C��.errorCode�badMessageHeader(7)�02 01 07��.errorNonce��04 14 d3 65 ce 64 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��.errorMsq��A2 61 ��..messageHeader��A0 5F 30 5D��...version�2�02 01 02��...revision�0�02 01 00��...date�19970514041853Z�18 0f 31 39 39 37 30 35 �31 34 30 34 31 38 35 33 �5a��...messageIDs��a0 16 ��....localID-C��80 14 6c 69 64 63 2d 6c �69 64 63 2d 6c 69 64 63 �2d 6c 69 64 63 2d��...rrpid��81 14 87 fb 2b 3d 61 62 �63 64 65 66 67 68 69 6a �6b 6c 6d 6e 6f 70��...swIdent�SET Specification v2.0�1a 16 53 45 54 20 53 70 �65 63 69 66 69 63 61 74 �69 6F 6E 20 76 32 2E 30��

Book 2: Programmer’s Guide 		Secure Electronic Transaction Specification

Page � PAGE �548�		May 30, 1997

Secure Electronic Transaction Specification		Book 2: Programmer’s Guide

May 30, 1997		Page � PAGE �549�

Version 1.0

Version 1.0

