Part II�Certificate Management

Overview

Introduction�Part II defines the Certificate Management Architecture, protocols, and concepts used in SET.��

Organization�Part II includes the following chapters:��

Chapter�Title�Page��1�� REF P2C1 * MERGEFORMAT �Certificate Management Architecture��� PAGEREF P2C1 �114���2�� REF P2C2 * MERGEFORMAT �Certificate Request Protocols��� PAGEREF P2C2 �134���3�� REF P2C3 * MERGEFORMAT �Certificate Revocation��� PAGEREF P2C3 �202���4�� REF P2C4 * MERGEFORMAT �Certificate Format��� PAGEREF P2C4 �207���5�� REF P2C5 * MERGEFORMAT �Certificate Revocation List and BrandCRLIdentifier��� PAGEREF P2C5 �242���6�� REF chap_CA_to_CA * MERGEFORMAT �CA to CA Messages��� PAGEREF chap_CA_to_CA �252���

�Chapter 1�Certificate Management Architecture

Overview

Introduction�Chapter 1 provides an overview of the Certificate Management Architecture and describes the Certificate Management functions.��

Organization�Chapter 1 includes the following sections:��

Section�Title�Contents�Page��1�� REF P2C1S1 * MERGEFORMAT �Architecture Overview��Introduces the Certificate Management Architecture and defines each of the architectural components.�� PAGEREF P2C1S1 �115���2�� REF P2C1S2 * MERGEFORMAT �Functional Overview��Describes the certificate issuance, renewal, and revocation functions.�� PAGEREF P2C1S2 �118���3�� REF P2C1S3 * MERGEFORMAT �Certificate Chain Validation��Describes the certificate validation process.�� PAGEREF P2C1S3 �124���4�� REF Root_Certificate_Distribution * MERGEFORMAT �Root Certificate Distribution��Describes the issuance and management of the Root certificates.�� PAGEREF Root_Certificate_Distribution�131���

�Section 1�Architecture Overview

General Overview

Architecture diagram�The Certificate Management Architecture consists of the nine components identified in � REF _Ref368206744 * MERGEFORMAT �Figure 10�. The Architecture is based on the hierarchy of trust defined for the management and verification of SET certificates by Certificate Authorities (CAs).

���Figure � SEQ Figure * ARABIC �10�: Certificate Management Architecture

�Architecture Overview

Root Certificate Authority�The Root CA (RCA) is kept off�line under extremely tight physical controls. The RCA will be accessed very infrequently to issue new Brand CA certificates and a new Root certificate. If the unlikely compromise of a Brand CA private key does occur, the Root CA will generate and distribute a Certificate Revocation List (CRL) identifying the Brand CA certificate.��

Brand CA�The Brand CA (BCA) allows for some degree of autonomy in each Brand’s certificate management. Like the Root CA, these CAs are operated under tight physical controls and will be used to issue Geopolitical and/or Cardholder, Merchant, or Payment Gateway CA certificates to the entities below them in the hierarchy. The Brand CA will generate, maintain, and distribute CRLs for compromised certificates that it generated and signed. It will also generate, maintain, and distribute BCIs containing all of the CRLs in the brand hierarchy.��

Geo�Political CA�The Geo�Political CA (GCA) allows the Brand to distribute responsibility for managing types of certificates to geographic or political regions. This level in the architecture allows Brand policies to vary from one region to another as deemed necessary by the Brands. The Geo�Political CA will generate, maintain, and distribute CRLs for compromised certificates that it generated and signed.��

Cardholder CA�The Cardholder CA (CCA) is responsible for generating and distributing Cardholder certificates to Cardholders. At the CCA’s option, it may accept certificate requests from Cardholders via Web and or e�mail. The CCA maintains relationships with card issuers to allow for the verification of Cardholder accounts. While the CCA will not generate and maintain a CRL, it will be responsible for distributing Root, Brand, Geopolitical, and Payment Gateway CA’s CRLs.

This CA may be operated by a payment brand, an Issuer, or another party according to payment brand rules.��Continued on next page

��styleref "Map Title"�Architecture Overview�, continued

Merchant CA�The Merchant CA (MCA) is responsible for distributing certificates to Merchants. Acquirers shall verify and approve their Merchant certificate requests prior to issuance by the MCA. This CA may be operated by a payment brand, an Acquirer, or another party according to payment brand rules. While the MCA will not generate and maintain a CRL, it will be responsible for distributing for distributing Root, Brand, Geopolitical, and Payment Gateway CA’s CRLs.��

Payment Gateway CA�The Payment Gateway CA (PCA) manages the issuance of certificates for SET Payment Gateways. This CA may be operated by a payment brand, an Acquirer, or another party according to payment brand rules. The PCA is responsible for generating, maintaining, and distributing CRLs for compromised Payment Gateway certificates.��

Cardholder�Cardholders request and receive certificates from a CCA.��

Merchant�Merchants request and receive certificates from a MCA.��

Payment Gateway�The Payment Gateways request and receive certificates from a PCA. ��

�Section 2�Functional Overview

Overview

Introduction�The CA provides three basic services to the entities below them in the Certificate Management Hierarchy: Certificate Issuance, Certificate Renewal, and Certificate Revocation. Each service is briefly described here, with a more detailed description in following chapters. ��

Organization�Section 2 includes the following topics:

Certificate Issuance

Certificate Renewal

Certificate Revocation��

�Certificate Issuance

Overview�Certificates are issued to subscribers by a variety of methods depending on the SET entity. End entities may be issued signature and or encryption certificates, depending on the entity. Cardholders are only issued signature certificates; Merchants and Payment Gateways may be issued both signature and encryption certificates. ��

Cardholder�Cardholder certificates are issued by CCAs. The issuance of Cardholder certificates involves the following communications between the Cardholder and CCA:

The Cardholder initiates a request for a certificate.

The CCA responds with an encryption certificate for the Cardholder to use to protect the transmission of its payment card number to the CCA.

The Cardholder encrypts its payment card number using the CCA’s certificate and sends it to the CCA.

The CCA responds with the appropriate payment card�specific certificate registration form.

The Cardholder completes the registration form, which includes the Cardholder public key, and sends it to the CCA for certification.

The CCA verifies the Cardholder registration information with the Issuer, generates the certificate, signs it, and then sends it to the Cardholder.��

Merchant�Merchant certificates are issued by MCAs. Before a Merchant certificate is issued, the request shall be verified by the Merchant’s Acquirer or payment brand authority. The certificates are obtained from the MCA using the following protocol:

The Merchant initiates a request for a certificate.

The MCA responds with a registration form.

The Merchant completes and sends the registration form and public keys to the MCA for processing.

The Acquirer or payment brand authority verifies the Merchant request and the MCA generates, signs, and sends the certificate to the Merchant. ��

Payment Gateway�Payment Gateway certificates are issued by the Payment Gateway CA (PCA). The Issuance of certificates parallels the communications described in the Merchant scenario. The Acquirer verifies the Payment Gateway certificate request and authorizes the certificate generation by the PCA.��Continued on next page

��styleref "Map Title"�Certificate Issuance�, continued

CA certificates�CA certificates are issued by the superior CA in the SET hierarchy. Brand CA certificates are issued by the Root CA, Geopolitical CA certificates are issued by the Brand CA, and Cardholder, Merchant, and Payment Gateway CA certificates are issued by either the Geopolitical CA or the Brand CA, depending on if a Geopolitical CA exists for that CA’s area. The security required for the issuance of CA certificates may dictate the use of a combination of hardware tokens and electronic media for certificate issuance and is outside the scope of SET. SET defines a protocol for CA Certificate Requests and Responses in Chapter 6. ��

�Certificate Renewal

Overview�Certificates for Cardholders, Merchants, and Payment Gateways will be renewed on a periodic basis following the same issuance procedure as for initial certificate generation, which is described in Chapter 2.��

Registration form�The registration form for renewals may request different or minimal information as deemed necessary by the Issuer or Acquirer. Depending on the brand’s policy, identification and authentication based on the use of the previous certificate may aid in the authentication of the individual.��

CA certificates�The protocol for CA certificate renewal is identical to that used for initial issuance, which is described in Chapter 6. ��

�Certificate Revocation

Overview�Certificates are used by Cardholders, Merchants, and acquirers as a means of authenticating each other prior to transacting business. A certificate may need to be revoked for a number of reasons: for example, due to a real or suspected compromise of the private key, a change in the identification information contained in the certificate, or termination of use.��

Cardholders�Payment Gateways � Cardholders need to be assured that they do not send account numbers to an unauthorized Payment Gateway. This is enforced using the following mechanisms:

PCA CRLs � Revoked Payment Gateway certificates are included in CRLs distributed to Cardholders.

CA CRLs � Revoked CA certificates are included on a CRL that is distributed to Cardholders. The Root, Brand, Geopolitical, and Payment Gateway CAs each maintain a CRL. Cardholder applications will identify unauthorized Payment Gateway certificates created using this CA certificate.

Immediate re�distribution of the Payment Gateway certificate to all Merchants will purge the older Payment Gateway certificate from the Merchant certificate cache.

Assigning a short cryptoperiod (for example, a one month validity period) to Payment Gateway certificates results in the certificate expiring soon after revocation. The cryptoperiod will be determined according to the brand’s policy.

Merchants � Cardholders do not need to identify revoked Merchant certificates because Cardholders do not send any sensitive payment information to Merchants.

CA CRL � The Cardholder shall verify that all CAs in the Merchant’s certificate path are valid (not in a CA CRL).��Continued on next page

��styleref "Map Title"�Certificate Revocation�, continued

Merchants�Payment Gateways � Merchants need to identify revoked Payment Gateway certificates. This is enforced using the following techniques:

PCA CRLs � Revoked Payment Gateway certificates are included in CRLs distributed to Merchants.

CA CRLs � Revoked CA certificates are included on a CRL that is distributed to Merchants. Merchants will identify unauthorized Payment Gateway certificates created using this CA certificate.

Immediate re�distribution of the Payment Gateway certificate to all Merchants will purge the older Payment Gateway certificate from the Merchant certificate database.

Assigning a short cryptoperiod (for example, a one month validity period) to Payment Gateway certificates results in the certificate expiring soon after revocation. The cryptoperiod will be determined according to the brand’s policy.

Cardholders � Merchants do not need to verify the validity of Cardholder certificates to protect payment information. The Merchant may perform the following validation of the Cardholder certificate:

CA CRLs � Use of the CA CRL verifies that no CA certificate in the Cardholder certificate path has been revoked.��

Payment gateway�Cardholders � The Payment Gateway:

shall verify that the Cardholder certificate path does not include a CA that is in a CRL, and

shall validate the information in the Authorization Request with the Issuer.

Merchants � The Payment Gateway:

shall verify that the Merchant certificate path does not include a CA in the CRL, and

shall verify that the Merchant maintains a valid relationship with the Acquirer.��

�Section 3�Certificate Chain Validation

Overview

Introduction�Certificates are verified through a hierarchy of trust illustrated in � REF _Ref371478783 * MERGEFORMAT �Figure 11� below. Each certificate is linked to the signature certificate of the certificate issuing entity. Certificates are validated by following the trust hierarchy to the Root CA. The path through which the certificates are validated is called the “signature chain.”

���Figure � SEQ Figure * ARABIC �11�: Hierarchy of Trust

Continued on next page

��styleref "Map Title"�Overview�, continued

Organization�Section 3 includes the following topics:

Validation of Certificate Chain

Dates in Certificates

Thumbprints��

�Validation of Certificate Chain

Overview�The validation of the signature chain requires that:

Each certificate in the path – from the End Entity (EE) certificate through the Root certificate – is validated, and

Each certificate correctly maps to the CA that issued the certificate.

SET certificate chain validation is performed according to the processing requirements specified in Section 12.4.3 of Amendment 1 to X.509 and according to the SET requirements specified below. SET requirements for chain validation are in addition to those specified in X.509.��

Certificate Chain Definition�The SET certificate chain is comprised of the set of certificates from the EE to the Root certificate, plus all of the Root’s predecessors back to the initial Root certificate.��

EE to CA Certificate Chainvalidation�In addition to the processing steps of X.509, the following constraints on the certificate chain shall be met:

The certIssuer field in the AuthorityKeyIdentifier extension of the EE certificate shallmatch the Issuer Name of the signing CA certificate.

The certSerialNumber field in the AuthorityKeyIdentifier extension of the EE certificate shall match the SerialNumber of the signing CA’s certificate.

The Validity dates (in the certificate and in the PrivateKeyUsagePeriod extension) in the EE certificate shall be within the certificate Validity dates of the CA certificate.

The notBefore Validity date in the EE certificate shall be within the Validity dates in the PrivateKeyUsagePeriod extension of the CA certificate.

For each certificate below a Root certificate, the Brand Names within the organization Name of the subject Distinguished Name of each certificate shall match. If present, the product type within the organization Name of each certificate shall also match.

When checking a certificate’s revocation status, the verifier shall ensure that it is holding an up to date BrandCRLIdentifier(BCI) and that it holds all of the CRLs on the BCI.

These constraints are illustrated graphically in � REF _Ref368714000 * MERGEFORMAT �Figure 12� on page � PAGEREF _Ref368714004 �128�.��Continued on next page

��styleref "Map Title"�Validation of Certificate Chain�, continued

EE certificate validation�The following shall be validated in EE certificates, in addition to the certificate chain processing requirements of X.509:

The KeyUsage field of the KeyUsage extension is valid for the intended purpose.

The subjectType field of the BasicConstraints extension indicates End Entity.

The CertificateType private extension corresponds with the context in which the certificate is being used.

The signature verifies.��

CA certificate validation�The following shall be validated in each CA certificate, in addition to the certificate chain processing requirements of X.509:

The KeyUsage field of the KeyUsage extension is valid for the intended purpose.

The CertificateType private extension corresponds with the context in which the certificate is being used.��

Chain validation�The validation procedures described above shall be enforced for all levels of the chain. For example, a Cardholder shall validate the Merchant, Merchant CA, Brand CA, Geo�Political CA, and Root CA certificates as described above. In practice, it is assumed that the validation process will stop at a level that has been previously validated. �� Continued on next page

��styleref "Map Title"�Validation of Certificate Chain�, continued

Detailed diagram�� REF _Ref368714000 * MERGEFORMAT �Figure 12� below provides a logical view of the certificate data elements, with an emphasis on the data elements used for signature chain validation. The bold arrows indicate which fields are validated and the thin arrows show which fields should contain the same value.

���Figure � SEQ Figure * ARABIC �12�: Certificate Comparison

�Dates in Certificates

Overview�The validation of certificate expiration dates is an integral part of the signature chain validation process. The validation of an EE certificate requires that all of the trust chain is valid and that no certificate in the chain has expired.��

Processing requirements�To ensure valid certificate dates for all certificates in a signature chain:

All SET software shall validate certificate dates as part of the signature chain validation process.

SET software shall provide a mechanism to prevent attempts at using expired certificates.

The validity period of a certificate shall be contained within the validity date range and the private key usage period of the issuing CA’s signature certificate.

The private key associated with the certificate expires before the certificate expires, allowing the public key in the certificate to be used to verify signatures after the private key has expired. Private key and certificate validity periods will be set according to brand policy. Appendix � REF AppL_Recommendations �T�: � REF Appx_Recommendations �Private Key and Certificate Duration� (on page � PAGEREF Appx_Recommendations �566�) illustrates an example of the relationship between the private key and certificate validity periods for each CA and End Entity.��

�Thumbprints

Overview�Thumbprints are hashes of certificates, CRLs, or the BrandCRLIdentifier. An End Entity includes Thumbprints in a message as a compact way to identify the certificates, CRLs, etc., that it is holding.

The recipient of a message containing Thumbprints optionally checks the Thumbprints, and includes, in the downstream message, any certificates, CRLs, or the BrandCRLIdentifier that the sender does not have but will need for the transaction. If the recipient opts to ignore the Thumbprints, it shall send all of the certificates, CRLs, and the BrandCRLIdentifier that the sender will need. The recipient is required to ensure that the requester possesses all certificates, CRLs, and the BrandCRLIdentifier needed to complete the processing of the message.��

Format�Thumbs ::= SEQUENCE {

 digestAlgorithm AlgorithmIdentifier {{DigestAlgorithms}},

 certThumbs [0] EXPLICIT Digests OPTIONAL,

 crlThumbs [1] EXPLICIT Digests OPTIONAL,

 brandCRLIdThumbs [2] EXPLICIT Digests OPTIONAL

 }

-- SHA-1 is used for SET and is indicated in the digestAlgorithm��

Thumbprint Generation�Thumbprints are computed by performing the SHA�1 hash of the following DER encoded ASN.1 structures:

UnsignedCertificate

UnsignedCertificateRevocationList

UnsignedBrandCRLIdentifier

The hash is computed over the tag�length�value of the encoded structure. The Thumbprint is the same hash that is used to sign or verify a certificate or CRL or BCI. ��

�Section 4�Root Certificate Distribution

Section Overview

Introduction�Validating a certificate chain depends on the possession of an authentic Root public key. The SET Root certificate is self�signed and linked to the next Root public key. The initial SET Root public key may be distributed with the SET software. ��

Organization�This section includes the following topics:

Initial Root Certificate Verification and Distribution

Root Certificate Update��

Root certificate format�The SET Root certificate is a version 3 X.509 certificate containing the extensions described in “� REF map_Required_CA_Certificate_Extensions * MERGEFORMAT �Required CA Certificate Extensions�” on page � PAGEREF map_Required_CA_Certificate_Extensions �241�. The same Root certificate is used for both CA certificate signing and CRL signing.��

�Initial Root Certificate Verification and Distribution

Certificate generation�Before the system is deployed, the following are generated:

R1 = Root key pair #1

C1 = certificate for Root key #1 (contains H2)

R2 = Root key pair #2

H2 = Thumbprint (hash) of the public component of R2

H2 is contained within the SET private extension, Hashed Root Key, in the Root certificate, C1. C1 is self�signed. C1 is distributed when the system is deployed. The HashedRootKey private extension is described on page � PAGEREF map_HashedRootKeyPrivate_extn �229�.��

Root key Distribution and Authentication �The SET Root certificate and its successors are delivered to the SET application via the Certificate Request protocol and the Payment protocol. The initial Root certificate, it’s public key, or the hash of the public key may also be delivered with the SET application software. Whenever a new Root certificate is received by a SET application, the application shall verify that the Root certificate chains back (via the HashedRootKey extension) to a previously authenticated Root certificate. If the Root certificate does not chain back to an authenticated Root, it shall be verified for authenticity by checking one of the following.

Verify that the Root certificate received matches one delivered with the SET application.

Verify that the SubjectPublicKeyInfo of the received Root certificate matches the SubjectPublicKeyInfo from a Root certificate delivered with the SET application.

Verify that the SHA�1 hash of the DER encoded SubjectPublicKeyInfo from the received Root certificate matches the same value obtained from the Root certificate delivered with the SET application.

Verify that the SHA�1 hash (in hex) of the DER encoded SubjectPublicKeyInfo from the received Root certificate matches the value obtained from a trusted source (for example, a national newspaper, a software help desk, etc.) and entered by the End Entity.

��

�Root Certificate Update

Root certificate update�When the time comes to replace the first Root certificate R1, the following are generated:

R3 = public component of Root key #3

H3 = thumbprint of R3

C2 = certificate for Root key #2 (contains H3 in the SET private extension)

The new Root certificate is distributed electronically via SET messages and may also be distributed via other transport methods (HTTP, FTP, SMTP).��

Validation of new Root certificate�The SET application:

validates the signature applied using R2 and

computes the hash of R2 and compares it to H2 (obtained from an extension in C1).

This is an iterative process with R4, C3, and H4 being generated and C3 (including H4) being distributed when it’s time to replace C2.��

Unscheduled Root Certificate Duplication�There are circumstances under which a Root certificate in the chain has to be duplicated with a different HashedRootKey extension. This will result in two Root certificates with the same subjectPublicKey and different HashedRootKey extensions each having a common predecessor Root certificate. The process of Certificate Chain Validation shall allow for the Root certificate chain to contain more than one successor of a single Root certificate and shall not assume that each Root certificate has a single successor.��

�Chapter 2�Certificate Request Protocols

Chapter Overview

Introduction�This chapter defines the Certificate Request protocols for Cardholders, Merchants, and Payment Gateways that allow them to obtain their original certificate and to renew certificates.��

Organization�This chapter includes the following sections: ��

Section�Title�Contents�Page��1�� REF P2C2S1 * MERGEFORMAT �Main Protocol��Describes the overall protocol for obtaining and renewing certificates.�� PAGEREF P2C2S1 �135���2�� REF P2C2S2 * MERGEFORMAT �Protocol Variations��Identifies variation of the protocol used when certain error conditions are encountered or when e�mail is used to obtain a certificate.�� PAGEREF P2C2S2 �142���3�� REF P2C2S3 * MERGEFORMAT �Cardholder Certificate Initiation Request/Response Processing��Defines how the certificate request process is started for a Cardholder.�� PAGEREF P2C2S3 �146���4�� REF P2C2S4 * MERGEFORMAT �Cardholder Registration Form Request/Response Processing��Defines how the Cardholder requests and obtains a registration form.�� PAGEREF P2C2S4 �152���5�� REF P2C2S5 * MERGEFORMAT �Merchant/Payment Gateway Certificate Initiation Processing��Defines how the certificate request process is started for a Merchant or an Payment Gateway. �� PAGEREF P2C2S5 �162���6�� REF P2C2S6 * MERGEFORMAT �Certificate Request and Generation Processing��Defines the processing associated with the CertReq message, the generation of the certificate, and the generation of the CertRes message.�� PAGEREF P2C2S6 �173���7�� REF P2C2S7 * MERGEFORMAT �Certificate Inquiry and Status Processing��Defines how the EE queries the CA to obtain the status of the certificate request.�� PAGEREF P2C2S7 �197���

�Section 1�Main Protocol

Overview

Preface�This section defines the protocol and message processing for a Cardholder, Merchant, or Payment Gateway (that is, an End Entity) to request and obtain signature and/or data encryption X.509 certificates from a Certificate Authority (CA). The protocol defined herein shall be used whether the EE is requesting its first certificate or renewing a certificate.��

Required Cardholder data�The Cardholder shall possess the following prior to requesting a certificate:

An established valid Brand account.

The ability to generate public/private key pairs and to securely store the private key.

Knowledge of certain information to be used for purposes of identifying and authenticating the Cardholder as required by the payment card Issuer (Issuers will have different requirements for this information).

The Universal Resource Locator (URL) or Internet mail address for the CCA.

SET�compliant browser or bolt�on application.��

Required Merchant data�The Merchant shall possess the following prior to requesting a certificate:

An established valid Merchant ID with an Acquirer.

The ability to generate public/private key pairs and to securely store the private key.

Knowledge of information from the agreement between the Merchant and the Acquirer (Acquirers will have different requirements).

The Universal Resource Locator (URL) or Internet mail address for the MCA.

SET�compliant browser or bolt�on application.��Continued on next page

��styleref "Map Title"�Overview�, continued

Required Payment Gateway data�The Payment Gateway shall possess the following prior to requesting a certificate:

The ability to generate public/private key pairs and to securely store the private key.

Its Bank ID Number (BIN).

Knowledge of certain information to be used for purposes of identifying and authenticating the Payment Gateway as required by the Acquirer (Acquirers will have different requirements).

The Universal Resource Locator (URL) or Internet mail address for the PCA.

SET�certified browser or bolt�on application.��

Certificate protocol initiation�The certificate protocol is started differently depending on the underlying communications mechanism.

On the World Wide Web, the SET application will receive an initiation message (not defined in this specification).

The user of an e�mail application shall initiate the SET application locally.��

Subsequent processing�After the SET application has been started by the user or kicked off by a Web certificate initiation message, exchanges described in the following sections take place between:

the Cardholder and the CCA,

the Merchant and the MCA, and

the Payment Gateway and the PCA,

to generate or renew a signature and/or encryption certificate.��Continued on next page

��styleref "Map Title"�Overview�, continued

Cardholder / CCA processing�The Cardholder application sends a CardCInitReq to the CA, using the stored Brand ID or one obtained from the certificate initiation message.

The CCA sends a CardCInitRes to the SET application.

The Cardholder application sends a RegFormReq to the CCA.

The CCA sends a RegFormRes containing the registration template and the policy statement.

The Cardholder application displays the registration template and policy statement. The user enters the requested information and agrees to the policy.

The Cardholder application includes the filled�in registration form, the new public key, and the certificate being renewed , if applicable, in a CertReq, and sends it to the CCA.

The CCA generates the certificate.

The CCA includes the certificate in a CertRes and sends it to the Cardholder.

These exchanges are illustrated graphically in � REF _Ref368212226 * MERGEFORMAT �Figure 13� on page � PAGEREF _Ref368212220 �139�.��

Merchant or Payment Gateway processing�The SET application sends a Me�AqCInitReq to the CA, using the BIN and Merchant ID obtained from the Merchant or Payment Gateway system administrator.

The CA sends an Me�AqCinitRes to the SET application, containing the registration form and policy statement.

The SET application displays the registration template and policy. The user enters the requested information and agrees to the policy statement.

The SET application includes the filled in registration information, the new public key(s), and the certificate(s) being renewed, if applicable, in a CertReq, and sends it to the CA.

The CA generates the certificate(s).

The CA includes the certificate(s) in a CertRes and sends it to the Merchant or Payment Gateway.

These exchanges are illustrated graphically in on page � PAGEREF _Ref368714512 �140�.��

�Detailed description of main protocol

The protocol�The figures on the following pages show the basic information exchanges between the Cardholder and the CCA, and the Merchant or Payment Gateway and the associated CA (MCA or PCA).

� REF _Ref368212226 * MERGEFORMAT �Figure 13� and � REF _Ref368212374 * MERGEFORMAT �Figure 14� illustrate the messages that shall be exchanged to renew or obtain a new certificate. The messages exchanged to obtain and submit a certificate registration form are different for the Cardholder than for the Merchant or Payment Gateway. The certificate request and response are the same for all End Entities.

� REF _Ref368367832 * MERGEFORMAT �Figure 15� shows the exchanges involved in a certificate inquiry. These are the same for all End Entities.��Continued on next page

��styleref "Map Title"�Detailed description of main protocol�, continued

Cardholder exchanges�� REF _Ref368212226 * MERGEFORMAT �Figure 13� below shows the exchanges for the Cardholder to register and obtain a new certificate or to renew a certificate.��

���CardCInitReq

���CardCInitRes

���RegFormReq

���RegFormRes

���CertReq

���CertRes

���Figure � SEQ Figure * ARABIC �13�: Cardholder Certificate Request Exchanges

Continued on next page

��styleref "Map Title"�Detailed description of main protocol�, continued

Merchant or Payment Gateway exchanges�� REF _Ref368212374 * MERGEFORMAT �Figure 14� below shows the exchanges for the Merchant or Payment Gateway to register and obtain a new certificate or to renew a certificate.�����Me�AqCInitReq

���Me�AqCInitRes

���CertReq

���CertRes

���Figure � SEQ Figure * ARABIC �14�: Merchant/Payment Gateway Certificate Request Exchanges

Continued on next page

��styleref "Map Title"�Detailed description of main protocol�, continued

Certificate inquiry exchange�If the CertRes indicates that the certificate is not ready, the EE may send a CertInqReq message to obtain the status of the request. The CertInqRes returns the certificate if it’s ready, provides status if there was a problem with the certificate request, or indicates when the certificate will be ready for pickup.��

����CertInqReq

���CertInqRes

���Figure � SEQ Figure * ARABIC �15�: Certificate Inquiry Message Exchange

�Section 2�Protocol Variations

Variations

Cardholder CertReq approved via e�mail�� REF _Ref368367886 * MERGEFORMAT �Figure 16� shows the protocol when a non�interactive communications mechanism like e�mail (SMTP) is used and the certificate request is approved. For the CardCInitReq/Res and RegFormReq/Res messages to be omitted from the protocol, the EE shall already be holding a registration form as well as the applicable CA certificates required to encrypt the CertReq. ��

���CertReq����CertRes����Figure � SEQ Figure * ARABIC �16�: Cardholder CertReq via E�Mail

Continued on next page

��styleref "Map Title"�Variations�, continued

Cardholder CertReq approved via the World Wide Web�� REF _Ref368367912 * MERGEFORMAT �Figure 17� shows the protocol for a Cardholder when an interactive communications mechanism like the WWW is used and the certificate request is approved.��

���CardCInitReq����CardCInitRes����RegFormReq����RegFormRes����CertReq����CertRes����Figure � SEQ Figure * ARABIC �17�: Cardholder CertReq via World Wide Web

Continued on next page

��styleref "Map Title"�Variations�, continued

�Merchant or Payment Gateway CertReq approved�� REF _Ref368368160 * MERGEFORMAT �Figure 18� shows the protocol for a Merchant or an Payment Gateway when an interactive communications mechanism like WWW (HTTP) is used and the certificate request is approved.��

���Me�AqCInitReq����Me�AqCInitRes����CertReq����CertRes����Figure � SEQ Figure * ARABIC �18�: Merchant or Payment Gateway CertReq via e�mail

Continued on next page

��styleref "Map Title"�Variations�, continued

CertInqReq with CertInqRes�� REF _Ref368368222 * MERGEFORMAT �Figure 19� shows the certificate inquiry protocol when a certificate has been generated. This protocol is used when the original CertRes is pending and the SET application needs to obtain the certificate at a later time.��

���CertInqReq����CertInqRes

���Figure � SEQ Figure * ARABIC �19�: CertInqReq with CertInqRes

�Section 3�Cardholder Certificate Initiation Request/Response Processing

Overview

Introduction�This section describes the certificate initiation process for the Cardholder. After the SET application has been started, the Cardholder sends a CardCInitReq to the CCA, indicating via Thumbprints the certificates, CRLs, and the BrandCRLIdentifier that are contained in its certificate cache. The CCA responds with a CardCInitRes containing any certificates, CRLs, and the BrandCRLIdentifier that the Cardholder will need for signature verification, as well as an encryption certificate to use for subsequent messages.��

���CardCInitReq

���CardCInitRes

���Figure � SEQ Figure * ARABIC �20�: Cardholder Certificate Initiation Process

E�mail initiation�The certificate request protocol is initiated either directly by the user launching or by another application launching the SET application. No SET initiation message is necessary.��

World Wide Web initiation�The certificate request protocol is initiated by the user performing a specific action (such as clicking a button on a Web page) that results in the Web server (the CCA in this case) creating and sending the SET initiation message to the EE. This SET message, containing the appropriate MIME type initiates the SET application.��

�Cardholder Generates CardCInitReq

Create CardCInitReq�The SET application shall perform the steps below to create a CardCInitReq message.��

Step�Action���Generate an RRPID.���Generate LID�EE.���Generate a fresh random Chall�EE.���Copy the BrandID that’s stored or was received in the initiation message.���Optionally populate Thumbs, which holds the thumbprints for each CRL, SET certificate, BrandCRLIdentifier, and Root certificate resident in the Cardholder’s trusted cache, if any exist. ���Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the CardCInitReq to the CCA.��

CardCInitReq���

CardCInitReq�{RRPID, LID�EE, Chall�EE, BrandID, [Thumbs]}��RRPID�Request/response pair ID.��LID�EE�Local ID; generated by and for the Cardholder system.��Chall�EE�Cardholder’s challenge to CCA’s signature freshness.��BrandID�BrandID of certificate requested.��Thumbs�Lists of Certificate (including Root), CRL, and BrandCRLIdentifier thumbprints currently held by Cardholder.��Table � SEQ Table * ARABIC �5�: CardCInitReq�xe "CardCInitReq"�

�CCA Processes CardCInitReq

CCA processing�When the CCA receives the CardCInitReq it shall process it as follows:

��

Step�Action���Receive the CardCInitReq from Receive Message (described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).���Verify that the RRPID in the CardCInitReq matches the RRPID in the Message Wrapper. If it does not verify, return an Error Message with ErrorCode set to unknownRRPID.���Store the Thumbs, LID�EE , Chall�EE, and RRPID to be used in the CardCInitRes.��

�CCA Generates CardCInitRes

CCA processing�After the CCA processes the CardCInitReq it shall perform the following steps to generate the signed CardCInitRes. As with any SignedData, the certificates and CRLs needed to verify the signature are included in the CardCInitRes outside of the “To Be Signed” data.��

Step�Action���Build “CardCInitResTBS” data as follows:

Copy the RRPID, LID�EE, and Chall�EE, from the values received in the CardCInitReq.

Optionally generate LID�CA.

Populate the CAEThumb with the thumbprint of the CCA’s data encryption certificate.

If the BrandCRLIdentifier is not specified in the Thumbs received in CardCInitReq, populate the BrandCRLIdentifier.

Copy the Thumbs from the CardCInitReq.���Sign the DER encoded CardCInitResTBS, as described in the “Signature” processing steps on page � PAGEREF map_Signature �93�. Set the content type of SignedData to be id�set�content�CardCInitResTBS.

Note: Include in the SignedData any certificates, CRLs, or the BrandCRLIdentifier that is not indicated by the Thumbs and that the Cardholder may need to verify the CCA’s signature or to encrypt the RegFormReq and the CertReq.���Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the CardCInitRes to the Cardholder.��Continued on next page

��styleref "Map Title"�CCA Generates CardCInitRes�, continued

CardCInitRes���

CardCInitRes�S(CA, CardCInitResTBS).��CardCInitResTBS�{RRPID, LID�EE, Chall�EE, [LID�CA], CAEThumb, [BrandCRLIdentifier], [Thumbs]}��RRPID�Request/response pair ID.��LID�EE�Copied from CardCInitReq.��Chall�EE�Copied from CardCInitReq.��LID�CA�Local ID; Generated by and for the CCA system.��CAEThumb�Thumbprint of CCA key�exchange certificate that Cardholder should use to encrypt RegFormReq.��BrandCRLIdentifier�See page � PAGEREF mapContentBCI �249�.��Thumbs�Copied from CardCInitReq.��Table � SEQ Table * ARABIC �6�: CardCInitRes�xe "CardCInitRes"�

�Cardholder Processes CardCInitRes

Processing�The Cardholder application shall process the CardCInitRes as follows.��

Step�Action���Receive the CardCInitRes from Receive Message .

Note: The processing performed on the received certificates, CRLs, and BrandCRLIdentifier is described in “Receive Message” (Part I, page � PAGEREF block_Receive_msg_wrapper �77�).���Verify that the RRPID matches the one sent in the CardCInitReq and the one received in the CardCInitRes message wrapper. If it does not verify, return an Error Message with ErrorCode set to unknownRRPID.���Verify, as specified in the “Thumbprint” processing steps (described in Part I on page � PAGEREF block_Sending_thumbs �79�), that the Thumbs received match those sent in the CardCInitReq message. If it does not verify, return an Error Message with ErrorCode set to thumbsMismatch.���Verify that the Chall�EE received is equal to the one sent in the CardCInitReq. If it does not verify, return an Error Message with ErrorCode set to challengeMismatch.���If it was included, store the received LID�CA to return in the RegFormReq. Verify that the Chall�EE received is equal to the one sent in the CardCInitReq.���Verify that the Cardholder application supports one of the algorithms indicated in the Tunneling extension in the CA’s encryption certificate. If the Cardholder application does not support a common encryption algorithm with the CA, notify the user and abort further CA message processing. ��

�Section 4�Cardholder Registration Form Request/Response Processing

Introduction�Following the receipt of the appropriate certificates, CRLs, and the BrandCRLIdentifer, the Cardholder can then securely request a certificate registration form via the RegFormReq. If the CCA successfully validates the registration form request, it returns the form in the RegFormRes. If the CCA does not have a registration form for the Cardholder’s request and/or has additional information concerning the service request denial to convey to the Cardholder, it is also indicated in the RegFormRes.��

����RegFormReq

���RegFormRes

���Figure � SEQ Figure * ARABIC �21�: Cardholder Registration Form Processing

�Cardholder Generates RegFormReq

Cardholder processing�Following successful processing of the CardCInitRes, the Cardholder application shall generate the RegFormReq using the steps below. The RegFormReq is encrypted by the Cardholder application using the certificate received from the CCA in the CardCInitRes.��

Step�Action���Build “RegFormReqData” as follows:

Generate a new RRPID.

Copy the LID�EE sent in the CardCInitReq.

Generate a fresh Chall�EE2.

If one was included in the CardCInitRes, copy LID�CA if one was included in the CardCInitRes.

Populate the RequestType, according to � REF _Ref383501119 * MERGEFORMAT �Table 8: Cardholder Registration Form RequestType Values� on page � PAGEREF _Ref383501128 �155�.

Populate the Language.

Optionally include Thumbs, which holds the thumbprints for each CRL, SET certificate, BrandCRLIdentifier, and Root certificate resident in the Cardholder’s trusted cache (Thumbs), if any exist.���Build “RegFormReqTBE” as follows:

Insert RegFormReqData.

Populate PANOnly using the PAN and ExNonce. The PAN is not padded.

Generate the SHA�1 hash of the DER encoded PANOnly. Set the content type of digestedData to id�set�content�PANOnly.���Build the “To Be Extra Encrypted” Data as follows:

Populate the PAN. If the PAN is less than nineteen bytes, pad out to nineteen bytes.

Generate a newly generated nonce, EXNonce, to mask the PAN.���Encrypt the data using the EXH processing (described in Part I on page � PAGEREF block_EXH �90�) with

RegFormReqTBE as “To Be Ordinarily Encrypted” data and the contentType of EnvelopedData to id�set�content�RegFormReqTBE and

result of step 3 as “To Be Extra Encrypted” data.

Note: Extra encrypt the data using the CCA’s key encryption certificate identified in the CardCInitRes by CAEThumb.���Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the RegFormReq to the CA.��Continued on next page

��styleref "Map Title"�Cardholder Generates RegFormReq�, continued

RegFormReq���

RegFormReq�EXH(CA, RegFormReqData, PANOnly)��RegFormReqData�{RRPID, LID�EE, Chall�EE2, [LID�CA], RequestType, Language, [Thumbs]}��PANOnly�See below.��RRPID�Request/response pair ID.��LID�EE�Copied from CardCInitRes.��Chall�EE2�EE’s challenge to CA’s signature freshness.��LID�CA�Copied from CardCInitRes.��RequestType�See page � PAGEREF block_requesttype2 �155�.��Language�Desired natural language for the rest of this flow.��Thumbs�Lists of Certificate (including Root), CRL, and BrandCRLIdentifier currently held by Cardholder.��Table � SEQ Table * ARABIC �7�: RegFormReq�xe "RegFormReq"�

PANOnly data�The PANOnly is comprised of the following fields:��

Field Name�Description��PAN�Cardholder’s Payment Card Number.��EXNonce�random number used to mask the PAN.��Continued on next page

��styleref "Map Title"�Cardholder Generates RegFormReq�, continued

RequestType�RequestType can have any one of the values shown in � REF _Ref368376420 * MERGEFORMAT �Table 8� below.��

Request Type�Signature Cert only�Encryption Cert only�Both Certs��Cardholder Initial�1�2*�3*��Cardholder Renewal�10�11*�12*��Table � SEQ Table * ARABIC �8�: Cardholder Registration Form RequestType Values

Note: The * indicates options that are reserved for future versions of SET

Additional restrictions�The following additional restrictions apply to the request types above:��

Request Type�Restrictions��2*�Shall have a valid Signature certificate and shall use the corresponding private key to sign the request for an Encryption certificate.��10, 12�Both the private key corresponding to the certificate being renewed and the private key of the new signature certificate shall be used to sign the renewal request.��11*�Renewal of Encryption certificates: the certificate Subject distinguished names of the Signature certificate (used to sign the request) and Encryption certificate shall match.��

�CCA Processes RegFormReq

CCA processing�When the CCA receives the RegFormReq it shall perform the following steps to validate the message and determine if a registration form will be returned.��

Step�Action���Receive the RegFormReq message from Receive Message (described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).���Store the PAN from the “To Be Extra Encrypted” data, after removing any extra padding. ���From the “RegFormReqData” data, store the RequestType, RRPID, LID�EE, Chall�EE2, LID�CA, Thumbs, and Language.���Verify that the RRPID received in the message wrapper matches the one in the RegFormReqTBE If it does not verify, return an Error Message with ErrorCode set to unknownRRPID.��

�CCA Generates RegFormRes

CCA processing�Following validation of the RegFormReq, the CCA shall generate the RegFormRes as follows. If validation of the request was successful, the registration form, policy statement, and URLs for brand and card logos are returned. If validation was unsuccessful, a reason and optionally a URL or e�mail address for more information will be returned.��

Step�Action���Generate “RegFormTBS” as follows:

Copy the RRPID, RequestType, LID�EE, Thumbs, and Chall�EE2 from the RegFormReqData.

If the LID�CA is provided in the CardCInitRes, copy the LID�CA,�otherwise, optionally generate a LID�CA for this service request.

Generate a fresh Chall�CA.

If the BrandCRLIdentifier is not specified in the Thumbs received in RegFormReq, populate the BrandCRLIdentifier.

If a Cardholder registration form is available for the PAN, Language and RequestType, build RegFormData as follows:

populate the RegTemplate and PolicyText corresponding to the RequestType, PAN, and Language,

include the RegFormID and RegFieldSeq. The RegFieldSeq may be omitted in the case of a renewal.

optionally include URLs for displaying the Brand and/or Card Logos.

the CertReq is to be encrypted with a different key than was used to encrypt the RegFormReq,populate CAEThumb with a different thumbprint than was sent in the CardCInitRes.

If an appropriate Cardholder registration form is not available, populate ReferralData as follows:

populate the Reason with the service denial information that will be displayed to the Cardholder, and

optionally populate the ReferralLoc with an e�Mail address and/or URLs where the user can obtain more information concerning the service denial.��Continued on next page

��styleref "Map Title"�CCA Generates RegFormRes�, continued

�styleref "Block Label"�CCA processing� (continued)���

Step�Action���Sign the result of step 1 (that is, the “RegFormTBS” data) according to Signature Processing on page � PAGEREF map_Signature �93�. Set the contentType of SignedData to id�set�content�RegFormTBS.���Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the RegFormRes message to the Cardholder.��

RegFormRes���

RegFormRes�S(CA, RegFormResTBS)��RegFormResTBS�{RRPID, LID�EE, Chall�EE2, [LID�CA], Chall�CA, [CAEThumb], RequestType, RegFormOrReferral, [BrandCRLIdentifier], [Thumbs]}��RRPID�Request/response pair ID.��LID�EE�Copied from RegFormReq.��Chall�EE2�Copied from RegFormReq.��LID�CA�Local ID; generated by and for CA system (new value may be specified).��Chall�CA�CA’s challenge to requester’s signature freshness.��CAEThumb�Thumbprint of CA key�exchange certificate that should be used to encrypt CertReq; if this field is not present, the certificate identified in CardCInitRes is used.��RequestType�See page � PAGEREF blockRequestType �155���RegFormOrReferral�See page � PAGEREF mapRegFormOrReferral �159�.��BrandCRLIdentifier�See page � PAGEREF mapContentBCI �249�.��Thumbs�Copied from RegFormReq.��Table � SEQ Table * ARABIC �9�: RegFormRes�xe "RegFormRes"�

Continued on next page

��styleref "Map Title"�CCA Generates RegFormRes�, continued

RegFormOrReferral���

RegFormOrReferral�< RegFormData, ReferralData >��RegFormData�{[RegTemplate], PolicyText}��ReferralData�{[Reason], [ReferralURLSeq]}��RegTemplate�{RegFormID, [BrandLogoURL], [CardLogoURL], RegFieldSeq}��PolicyText�Statement to be displayed along with RegTemplate on requester’s system.��Reason�Statement concerning request to be displayed on requester’s system.��ReferralURLSeq�{ReferralURL +}

Optional URLs pointing to referral information, listed in the order of relevance. ��RegFormID�CA�assigned identifier.��BrandLogoURL�The URL for the payment card brand logo.��CardLogoURL�The URL for the financial institution logo.��RegFieldSeq�{RegField +}��ReferralURL�Uniform Resource Locator of alternate CA for processing of certificate requests for this entity.��RegField�{[FieldId], FieldName, [FieldDesc], [FieldLen], FieldRequired, FieldInvisible}��FieldID�See Appendix � REF AppL_OIDs_for_RegFormFlds * MERGEFORMAT �L�: � REF Appx_OIDs_for_RegFormFlds * MERGEFORMAT �Object Identifiers for Registration Form Fields� in SET Book� � 2: Programmer’s Guide.��FieldName�One or more field names to be displayed as labels for a fill�in form on requester’s system; text is in the language specified in RegFormReq or Me�AqCInitReq.��FieldDesc�Description of contents of field in the language specified in RegFormReq or Me�AqCInitReq; contains additional information for use when the cardholder requests help filling out the form.��FieldLen�Maximum length of field.��FieldRequired�Boolean indicating whether data is required (either entered by the Cardholder or, if the field is invisible, populated by the application).��FieldInvisible�Boolean indicating that the field should not be displayed to the user; the application should either fill in the FieldValue based on FieldID or leave it empty.��Table � SEQ Table * ARABIC �10�: RegFormOrReferral�xe "RegFormOrReferral"�

�Cardholder Processes RegFormRes

Cardholder processing�The Cardholder application shall process the RegFormRes as follows:

��

Step�Action���Receive the RegFormRes message from Receive Message (described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).���Verify the signature. If it does not verify, return an Error Message with ErrorCode set to signatureFailure.���Obtain the RRPID, RequestType, LID�EE, Chall�EE2, CAEThumb from “RegFormTBS”.���Verify that the RRPID is the same as the one received in the message wrapper and sent in the RegFormReq. If it does not verify, return an Error Message with ErrorCode set to unknownRRPID.���Verify that the RequestType, LID�EE , and Chall�EE2 are the same as those sent in the RegFormReq. If it does not verify, return an Error Message with ErrorCode set to challengeMismatch.���If a CAEThumb was included, store the corresponding Encryption certificate to be used for encrypting the CertReq. ���Verify, as specified in the “Thumbprint” processing steps (described in Part I on page � PAGEREF block_Sending_thumbs �79�), that the Thumbs received match those sent in the CardCInitReq message. If it does not verify, return an Error Message with ErrorCode set to thumbsMismatch.���If the RegFormData is included in the “RegFormTBS” data:

Store the LID�CA .

Display the policy text and require user acknowledgment before the SET application generates a CertReq.

Display the visible fields in the registration form and prompt the user to fill in the fields.

If the RegFormRes contains URL(s), display the Brand and/or Card Logos.

Populate any invisible fields in the registration form. If a field is required and invisible and the application cannot populate the field, the field shall be left empty and the remainder of the registration form shall be populated and transmitted in the CertReq as specified.

After the user has completed the registration form generate a CertReq.��Continued on next page

�Cardholder Processes RegFormRes, continued

�styleref "Block Label"�Cardholder processing� (continued)���

Step�Action���If the ReferralData is included in the “RegFormResTBS” data:

Display the Reason.

If the ReferralLoc is included, display the URLs or e�mail address from ReferralLoc.

Do not generate a CertReq. The protocol shall start over at the CardCInitReq.��

�Section 5�Merchant/Payment Gateway Certificate Initiation Processing

Overview

Introduction�The Me�AqCInitReq/Res message pair is used by the Merchant or Payment Gateway to obtain a certificate registration form. The Merchant or Payment Gateway starts the certificate protocol by sending the Me�AqCInitReq. The Me�AqCInitReq contains the bank information for the Merchant or Payment Gateway, the type of certificate being requested, and the certificates, CRLs, and the BrandCRLIdentifier that are in the trusted certificate cache. If the MCA or PCA has a registration form in the correct language for the indicated bank, it is returned in the Me�AqCInitRes along with any certificates, CRLs, and the BrandCRLIdentifier that the Merchant or Payment Gateway will need for signature verification. If the MCA or PCA does not have a registration form and/or has additional information concerning the service request denial to convey to the Merchant or Payment Gateway, it is also indicated in the Me�AqCInitRes. The certificate protocol is started by the Merchant or Payment Gateway as shown in � REF _Ref368376502 * MERGEFORMAT �Figure 22� below. Following receipt of the Me�AqCInitRes containing a registration form, the EE may send a CertReq containing the completed form.��

���Me�AqCInitReq

���Me�AqCInitRes

���Figure � SEQ Figure * ARABIC �22�: Merchant/Payment Gateway Certificate Initiation Processing

�Merchant/Payment Gateway creates Me�AqCInitReq

�Create Me�AqCInitReq�The SET application shall generate the Me�AqCInitReq as follows:��

Step�Action���Generate a new RRPID.���Generate a fresh LID�EE.���Generate a fresh random Chall�EE.���Populate the BrandID that’s stored or was received in the SET initialization message. ���Populate the RequestType.���Populate the Language.���Optionally create the thumbprints for each crl, set certificate, BrandCRLIdentifier, and root certificate resident in its trusted cache, if any exist.���If the EE is a Merchant, populate the Merchant’s BIN and ID. Otherwise, populate the Acquirer’s BIN and optionally populate the Acquirer’s business ID.���Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the Me�AqCInitReq to the CA.��Continued on next page

��styleref "Map Title"�Merchant/Payment Gateway creates Me-AqCInitReq�, continued

Me�AqCInitReq���

Me�AqCInitReq�{RRPID, LID�EE, Chall�EE, RequestType, IDData, BrandID, Language, [Thumbs]}��RRPID�Request/response pair ID.��LID�EE�Local ID; generated by and for EE system.��Chall�EE�EE’s challenge to CA’s signature freshness. ��RequestType�See next page.��IDData�See below.��BrandID�BrandID of certificate requested.��Language�Desired natural language for the rest of this flow.��Thumbs�Lists of Certificate (including Root), CRL, and BrandCRLIdentifier currently held by EE. ��Table � SEQ Table * ARABIC �11�: Me�AqCInitReq�xe "Me�AqCInitReq"�

IDData���

IDData�< MerchantAcquirerID, AcquirerID >

Only for Merchants and Acquirers��MerchantAcquirerID�{MerchantBIN, MerchantID} ��AcquirerID�{AcquirerBIN, [AcquirerBusinessID]} ��MerchantBIN�Bank Identification Number for the processing of Merchant’s transactions at the Acquirer��MerchantID�Merchant ID assigned by Acquirer��AcquirerBIN�The Bank Identification Number of this Acquirer��AcquirerBusinessID�The Business Identification Number of this Acquirer��Table � SEQ Table * ARABIC �12�: IDData�xe "IDData"�

Continued on next page

��styleref "Map Title"�Merchant/Payment Gateway creates Me-AqCInitReq�, continued

RequestType�The RequestType for the Merchant or Payment Gateway can have any one of the following values.��

Request Type�Signature Cert only�Encryption Cert only�Both Certs��Merchant Initial�4�5�6��Payment Gateway Initial�7�8�9��Merchant Renewal�13�14�15��Payment Gateway Renewal�16�17�18��Table � SEQ Table * ARABIC �13�: Merchant/Acquirer Certificate RequestType Values

�Additional restrictions�The Merchant or Payment Gateway shall either have a Signature certificate or be requesting one so that it can sign the CertReq. The following additional restrictions apply to the request types above:��

Request Type�Restrictions��5, 8�Shall have a valid Signature certificate to sign the request for an encryption certificate.��14, 15, 17, 18�Renewal of Encryption certificates: the certificate Subject distinguished names of the Signature certificate (used to sign the request) and Encryption certificate shall match.��13, 15, 16, 18�Both the private key corresponding to the signature certificate being renewed and the private key of the new signature certificate shall be used to sign the renewal request.��

�CA Processes Me�AqCInitReq

CA processing�The CA receives the Me�AqCInitReq and shall process it as follows:��

Step�Action���Receive the Me�AqCInitReq message from Receive Message (described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).���Verify that the RRPID received in the message wrapper matches the one received in the Me�AqCInitReq. If it does not verify, return an Error Message with ErrorCode set to unknownRRPID.���Store the RRPID, LID�EE, Chall�EE, BrandID, Language, Thumbs, and IDData. ��

�CA Generates Me�AqCInitRes

CA processing�Following validation of the Me�AqCInitReq, the CA shall generate the Me�AqCInitRes according to the following steps. If the request is successful, the registration form, policy statement , and URLs for brand and card logos are returned. If the request is unsuccessful, a reason and optionally a URL or e�mail address for more information will be returned.��Continued on next page

��styleref "Map Title"�CA Generates Me-AqCInitRes�, continued

�styleref "Block Label"�CA processing� (continued)���

Step�Action���Build “Me�AqCInitResTBS” as follows:

Copy the RRPID, LID�EE and Chall�EE from the Me�AqCInitReq.

Optionally generate a LID�CA for this service request.

Generate a fresh Chall�CA.

If a Merchant or Payment Gateway registration form is available for the BIN, RequestType and Language:

populate the RegFormData as follows: retrieve the RegTemplate and PolicyText corresponding to the RequestType, BIN, and Language,

optionally include URLs for displaying the Brand and/or Card Logos,

include the RegFormID and RegFieldSeq. The RegFieldSeq may be omitted in the case of a renewal.

If the CA authenticates the Merchant or Payment Gateway via the AcctData, populate the AcctDataField indicating the name of the data to be entered, a description, a length, and whether the field shall be entered by the EE.

If an appropriate Merchant or Payment Gateway registration form is not available: populate ReferralData as follows:

include the Reason for the service denial that will be displayed by the Merchant or Payment Gateway, and

optionally include, in the ReferralLoc, an e�Mail address and/or URLs where the user can obtain more information concerning the service denial.

Include the Thumbprint of the CA’s key encryption certificate, CAEThumb.

If the BrandCRLIdentifier is not specified in the Thumbs received in Me�AqCInitReq, populate the BrandCRLIdentifier.

Copy the Thumbs from the Me�AqCInitReq.

Copy the RequestType received in the Me�AqCInitReq.

��Continued on next page

��styleref "Map Title"�CA Generates Me-AqCInitRes�, continued

�styleref "Block Label"�CA processing� (continued)���

�Sign Me�AqCInitResTBS according to Signature Processing on page � PAGEREF map_Signature �93�. Set the content type of SignedData to id�set�content�Me�AqCInitResTBS. ���Invoke Compose Message Wrapper (described on page � PAGEREF block_compose_msgwrpr �76�) to send the Me�AqCInitRes to the Merchant or Acquirer.��Continued on next page

��styleref "Map Title"�CA Generates Me-AqCInitRes�, continued

Registration Form Template�The MCA or PCA uses the same registration form template specified for the CCA:��

Me�AqCInitRes���

Me�AqCInitRes�S(CA, Me�AqCInitResTBS)��Me�AqCInitResTBS�{RRPID, LID�EE, Chall�EE, [LID�CA], Chall�CA, RequestType, RegFormOrReferral, [AcctDataField], CAEThumb, [BrandCRLIdentifier], [Thumbs]}��RRPID�Request/response pair ID.��LID�EE�Copied from Me�AqCInitReq.��Chall�EE�Copied from Me�AqCInitReq.��LID�CA�Local ID; generated by and for CA system.��Chall�CA�CA’s challenge to EE’s signature freshness.��RequestType�See page � PAGEREF blockMeRequestType �165�.��RegFormOrReferral�See page � PAGEREF blockRegFormOrReferral �159�.��AcctDataField�RegField (see “� REF blockRegFormOrReferral * MERGEFORMAT �RegFormOrReferral�” on page � PAGEREF blockRegFormOrReferral �159�); an additional registration field to be displayed to collect the value for AcctData in CertReq.��CAEThumb�Thumbprint of CA key�exchange certificate that should be used to encrypt CertReq.��BrandCRLIdentifier�See page 252. ��Thumbs�Copied from Me�AqCInitReq.��Table � SEQ Table * ARABIC �14�: Me�AqCInitRes�xe "Me�AqCInitRes"�

�Merchant/Acquirer Processes Me�AqCInitRes

Me�AqCInitRes processing�The SET application shall process the Me�AqCInitRes as follows.��

Step�Action���Receive the Me�AqCInitRes message from Receive Message (described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).

Note: The processing performed on the received certificates, CRLs, and BrandCRLIdentifier is described in the Receive Message processing steps (in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).���Verify the signature. If it does not verify, return an Error Message with ErrorCode set to signatureFailure.���From the “Me�AqCInitResTBS” data, store the RRPID, LID�EE, Chall�EE, CAEThumb, BrandCRLIdentifier, Thumbs and RequestType.���Verify that the RRPID matches the one in the message wrapper and the one sent in the Me�AqCInitReq. If it does not verify, return an Error Message with ErrorCode set to unknownRRPID.���Verify that the Chall�EE received matches the one sent in the Me�AqCInitReq. If it does not verify, return an Error Message with ErrorCode set to challengeMismatch.���Verify that the Thumbs received match those sent in the Me�AqCInitReq message. If it does not verify, return an Error Message with ErrorCode set to thumbsMismatch.��Continued on next page

��styleref "Map Title"�Merchant/Acquirer Processes Me-AqCInitRes�, continued

�styleref "Block Label"�Me-AqCInitRes processing� (continued)���

Step�Action���If the RegFormData is included in Me�AqCInitResTBS:

Store the LID�CA and the Chall�CA.

Display the policy text and require the user to acknowledge before the SET application will generate a CertReq.

Display the visible fields in the registration form and prompt the user to fill in the fields.

If the Me�AqCInitResTBS contains URL(s), display the Brand and/or Card Logos.

If the AcctDataField is present, display the Name and Description and prompt the user to fill in the field.

Populate any invisible fields in the registration form. If a field is required and invisible and the application cannot populate the field, the field shall be left empty and the remainder of the registration form shall be populated and transmitted in the CertReq as specified. ���After the Merchant or Payment Gateway has completed the registration form and entered the AcctData, if applicable, generate a CertReq.��9�If ReferralData is included in Me�AqCInitResTBS data:

Display the Reason.

If the ReferralLoc is included, display the URLs or e�mail address from ReferralLoc.

Do not generate a CertReq. The protocol shall start over at the Me�AqCInitReq.��

�Section 6�Certificate Request and Generation Processing

Overview

Introduction�The Cardholder, Merchant System Administrator, or Payment Gateway System Administrator enters the information needed by the RegForm and the SET application sends the CertReq message to the CA. Following successful validation of the CertReq, the generated certificate(s) are returned to the EE in a CertRes. If there are any errors in the registration form, the CA indicates this in the CertRes. The SET application can re�submit the corrected registration form in a new CertReq. ��

����CertReq

���CertRes

���Figure � SEQ Figure * ARABIC �23�: Certificate Request and Generation Processing

�End Entity Generates CertReq

Cardholder input�The Cardholder enters their payment card number, expiration date, and other information requested by the CCA (contained in the registration form).��

Merchant input�The Merchant System Administrator enters the Merchant authentication data (if any) and the other information requested by the MCA (contained in the registration form).��

Payment Gateway input�The Payment Gateway System Administrator enters the Payment Gateway authentication data (if any) and the other information requested by the PCA (contained in the registration form).��

CertReq�The Certificate Request (CertReq) contains:

the new public keys,

the certificates being renewed, if applicable,

the filled�in registration form,

EE account information,

secret keys to be used by the CA to encrypt the Certificate Response (CertRes),

other reference numbers and challenges.

The payload of the message and optionally a hash of the EE account information is signed using the private key corresponding to the signature certificate being renewed, if it exists, and the new signature private key. The signed data and the signatures are then encrypted using a symmetric algorithm. The symmetric key used for this encryption is OAEP’d along with the EE account information, if present, and the result is encrypted using a public key algorithm.��

CertReq re�submission�If the CA finds errors in the submitted registration form, they are indicated in the CertRes and a corrected registration form may be re�submitted in a new CertReq.��Continued on next page

��styleref "Map Title"�End Entity Generates CertReq�, continued

CertReq ��The EE application shall generate the CertReq as specified below. The CertReq is generated using EncX or Enc processing depending on the presence of AcctInfo. If the EE is a Cardholder, the AcctInfo always contains the PAN and EncX is always used. If the EE is a Merchant or a Payment Gateway, AcctInfo contains authentication data that may or may not be required by the CA. The Me�AqCInitRes indicates if AcctInfo is required in the AcctInfoField. EncX is only used if AcctInfo is present.

If the CertReq is being re�submitted with the corrected registration form, the value for Chall�EE3 and RRPID shall be re�generated for the re�submitted CertReq. ��Continued on next page

��styleref "Map Title"�End Entity Generates CertReq�, continued

CertReq (EncX) Generation�If the EE application is for a Cardholder, or a Merchant or a Payment Gateway with AcctInfo to send, the CertReq shall be generated using EncX processing as follows:��

Step�Action���If the RequestType is for a new or renewed signature certificate, generate a private/public key pair for the signature certificate.���If the requesting entity is not a Cardholder and if the RequestType is for a new or renewed encryption certificate, generate a private/public key pair for the encryption certificate.���If the EE is a Cardholder, generate a 160�bit random number, CardSecret.���Generate a 160�bit random number, EXNonce.���Build the CertReqTBS as follows:

Generate a new RRPID.

If the EE received a RegFormRes or a Me�AqCInitRes, copy the RequestType from that message; otherwise populate the RequestType.

Populate the RequestDate as the current date.

Copy LID�EE from a previous message. If one doesn’t exist, generate a new one.

Generate a fresh Chall�EE3.

Copy LID�CA, if included, and Chall�CA from a previous message, if one exists.

If the EE is a Merchant or Payment Gateway:

populate the IDData, and

if the AcctDataField was included in the Me�AqCInitRes and was a required field, include the AcctData entered by the EE.

If the EE is a Cardholder, populate the PAN, CardExpiry, and CardSecret.

Generate EXNonce.

Copy the RegForm ID that was sent in the RegFormRes or Me�AqCInitRes.

If the RegFieldSeq was present in the Me�AqCInitRes or RegFormRes, include the new or corrected RegForm.

��Continued on next page

��styleref "Map Title"�End Entity Generates CertReq�, continued

CertReq (EncX)

Generation, (continued)���

Step�Action���If a Cardholder application, select, from the “Tunneling” private extension in the CA key encryption certificate, a common preferred encryption algorithm for the CA to use to encrypt the CertRes. Populate the algorithm ID and a key in CaBackKeyData. If a common algorithm is not found, abort processing and notify the user.

Populate the newly generated public keys, PublicKeyS and/or PublicKeyE, for the CA to certify.

If the EE is a Merchant or Payment Gateway and the request type is for the renewal of an Encryption certificate, populate EEThumb with the thumbprint of the certificate being renewed. If the request type is for the renewal of a Signature certificate, a thumbprint of the Signature certificate being renewed is not required because the CertReq is signed with it.

Optionally include Thumbs, which holds the thumbprints for each CRL, SET certificate, BrandCRLIdentifier, and Root certificate resident in the Cardholder’s trusted cache (Thumbs), if any exist.���Next, format the “To Be Extra Encrypted” data:

If the EE is a Cardholder, populate the PAN, CardExpiry, CardSecretCardNonce, and EXNonce in PANData0.

If the EE is a Merchant or Payment Gateway, optionally populate AcctData if it is required and EXNonce.��Continued on next page

��styleref "Map Title"�End Entity Generates CertReq�, continued

CertReq (EncX) Generation, (continued)���

Step�Action���Envelope the data using EncX encapsulation (as described in Part I on page � PAGEREF block_EncX �83�):�������Include:�Processing�����CertReqTBS as “To Be Signed” data, and�How the data is signed depends on the RequestType. There is a minimum of one and possibly two signatures, i.e. SignerInfos, on a CertReq.

If the Request Type is for a new Signature certificate, sign the data using the private key corresponding to the public key contained in PublicKeyS.

If the Request Type is for a renewed Signature certificate, sign the data using the private key corresponding to the public key contained in PublicKeyS, and using the private key corresponding to the certificate being renewed.

If the request type is for an Encryption certificate, sign the data using the private key corresponding to an existing signature certificate.

If the data is signed with a private key that does not yet correspond to a certificate, set the SignerInfo.SerialNumber to zero and the Signer Info.IssuerName to the “Null�DN”, i.e., the RDNSequence is an encoded NULL.

Also, set the content type of SignedData to id�set�content�CertReqTBS.�����Result of step 6 as “To Be Extra Encrypted” data.�“Extra” encrypt using the CA certificate indicated by CAEThumb in the CardCInitRes or RegFormRes, if one was included, or Me�AqCInitRes.�����CertReqTBEX as “To Be Ordinarily Encrypted” data.�Encrypt CertReqTBEX and set the content type of EnvelopedData to id�set�content�CertReqTBEX����������Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the CertReq to the CA.��Continued on next page

��styleref "Map Title"�End Entity Generates CertReq�, continued

CertReq (Enc) Generation�If the EE application is for a Merchant or a Payment Gateway that does not have AcctData (in AcctInfo) to send, the CertReq shall be generated using Enc processing as follows:��

Step�Action���If the RequestType is for a new or renewed signature certificate, generate a private/public key pair for the signature certificate.���If the RequestType is for a new or renewed encryption certificate, generate a private/public key pair for the encryption certificate.���Generate a 160�bit random number, EXNonce.���Build the “CertReqData” data as follows:

Generate a new RRPID.

If the Merchant or Payment Gateway received a Me�AqCInitRes, copy the RequestType from that message; otherwise populate the RequestType.

Populate the RequestDate from the current date.

Copy LID�EE from a previous message. If one doesn’t exist, generate a new one.

Generate a fresh Chall�EE3.

Copy LID�CA, if included, and Chall�CA from a previous message, if one exists.

Populate the IDData.

Populate the RegFormID received in the Me�AqCInitRes.

Populate the new or corrected RegForm.

Populate the newly generated public keys, PublicKeyS and/or PublicKeyE, for the CA to certify.

If the RequestType is for the renewal of an Encryption certificate, populate the EEThumb with the thumbprint of the “to be renewed” certificate.

Optionally include Thumbs, which holds the thumbprints for each CRL, SET certificate, BrandCRLIdentifier, and Root certificate resident in the Cardholder’s trusted cache (Thumbs), if any exist.��Continued on next page

��styleref "Map Title"�End Entity Generates CertReq�, continued

�styleref "Block Label"�CertReq (Enc) Generation� (continued)���

Step�Action��5�Envelope the data using Enc encapsulation (as described in Part I on page � PAGEREF block_EncX �83�):�������Include:�Processing�����CertReqData as “To Be Signed” data, and�How the data is signed depends on the RequestType. There is a minimum of one and possibly two signatures, i.e. SignerInfos, on a CertReq.

If the Request Type is for a new Signature certificate, sign the data using the private key corresponding to the public key contained in PublicKeyS.

If the Request Type is for a renewed Signature certificate, sign the data using the private key corresponding to the public key contained in PublicKeyS, and using the private key corresponding to the certificate being renewed.

If the request type is for an Encryption certificate, sign the data using the private key corresponding to an existing signature certificate.

If the data is signed with a private key that does not yet correspond to a certificate, set the SignerInfo.SerialNumber to zero and the Signer Info.IssuerName to the “Null�DN”, i.e., the RDNSequence is an encoded NULL.Also, set the content type of SignedData to id�set�content�CertReqData.

DER encode the resulting SignedData to obtain CertReqTBE.�����DES Key as “To Be Extra Encrypted” data.�For Enc processing, the only “extra” encrypted data is the symmetric key used for the “ordinarily” encrypted data. Encrypt the key using the certificate indicated by CAEThumb in the Me�AqCInitRes.�����CertReqTBE as “To be Ordinarily Encrypted Data”�Encrypt CertReqTBE and set the ContentType equal to id�set�content�CertReqTBE.���������6�Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the CertReq to the CA.��Continued on next page

��styleref "Map Title"�End Entity Generates CertReq�, continued

CertReq���

CertReq�< EncX(EE, CA, CertReqData, AcctInfo),� Enc(EE, CA, CertReqData) >

Up to two signatures are implicit in the encapsulation. CertReqTBE and AcctInfo may be signed by any or all of the private keys corresponding to the following end entity certificates:

the private key for which a new Signature certificate,

an existing Signature certificate, for an Encryption certificate request, or

an existing Signature certificate, for a renewal request.

These “signatures” without a corresponding signature certificate are pro forma only; they prove only that EE holds the private key. ��CertReqData�{RRPID, LID�EE, Chall�EE3, [LID�CA], [Chall�CA], RequestType, RequestDate, [IDData], RegFormID, [RegForm], [CABackKeyData], PublicKeySorE, [EEThumb], [Thumbs]}��AcctInfo�< PANData0, AcctData >

If the requester is a Cardholder, PANData0 is included.

If the requester is a Merchant or an Acquirer, AcctData is optional.��RRPID�Request/response pair ID��LID�EE�Copied from RegFormRes or Me�AqCInitRes��Chall�EE3�EE’s challenge to CA’s signature freshness��LID�CA�Copied from RegFormRes or Me�AqCInitRes��Chall�CA�Copied from RegFormRes or Me�AqCInitRes��RequestType�See page 157.��RequestDate�Date of certificate request.��IDData�See page � PAGEREF blockIDData �164� Omit if EE is Cardholder.��Table � SEQ Table * ARABIC �15�: CertReq�xe "CertReq"�

Continued on next page

��styleref "Map Title"�End Entity Generates CertReq�, continued

�styleref "Block Label"�CertReq� (continued)���

RegFormID�CA�assigned identifier��RegForm�{RegFormItems +}

The field names copied from RegFormRes or Me�AqCInitRes, now accompanied by values filled in by EE’s implementation. ��CABackKeyData�{CAAlgId, CAKey}��PublicKeySorE�{[PublicKeyS], [PublicKeyE]}

The entity’s public key(s). At least one key shall be specified. A user may request a signature certificate, an encryption certificate, or both.��EEThumb�Thumbprint of entity key�encryption certificate that is being renewed.��Thumbs�Lists of Certificate (including Root), CRL, and BrandCRLIdentifier currently held by EE. ��PANData0�See next page.��AcctData�See next page.��RegFormItems�{FieldName, FieldValue}��CAAlgId�Symmetric key algorithm identifier.��CAKey�Secret key corresponding to the algorithm identifier.��PublicKeyS�Proposed public signature key to certify.��PublicKeyE�Proposed public encryption key to certify.��FieldName�One or more field names to be displayed as a fill�in form on the requester’s system, as a text field in the language specified in RegFormReq or Me�AqCInitReq.��FieldValue�Values entered by EE.���styleref "Caption"�Table 15: CertReq�, continued

Continued on next page

��styleref "Map Title"�End Entity Generates CertReq�, continued

PANData0���

PANData0�{PAN, CardExpiry, CardSecret, EXNonce}��PAN�Primary Account Number; typically, the account number on the card.��CardExpiry�Expiration date on the card.��CardSecret�Cardholder’s proposed half of the shared secret, PANSecret. Note: this value is saved for use in generating TransStain (see “� REF blockPIHead * MERGEFORMAT �PIHead�” on page � PAGEREF blockPIHead �273�).��EXNonce�A fresh nonce to foil dictionary attacks on PANData0.��Table � SEQ Table * ARABIC �16�: PANData0�xe "PANData0"�

AcctData���

AcctData�{AcctIdentification, EXNonce}��AcctIdentification�For a Merchant, this field is unique to the Merchant as defined by the payment card brand and Acquirer.

For an Acquirer, this field is unique to the Acquirer as defined by the payment card brand.��EXNonce�A fresh nonce to foil dictionary attacks on AcctIdentification��Table � SEQ Table * ARABIC �17�: AcctData�xe "AcctData"�

�CA Validates CertReq (EncX)

Validation

EncX�The CA shall validate the CertReq (EncX) as follows:��

Step�Action���Receive the CertReq message from Receive Message (as described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).

Note: Decrypt and verify the signature of the CertReq message, in the inverse of the steps listed for EncX processing (described in Part I on page � PAGEREF block_EncX �83�), with the following qualifications. Depending on the RequestType that was sent in the CertReq, there will be one or two signatures, i.e. SignerInfos, on the CertRes.

If the RequestType indicated a new Signature certificate or both new Signature and Encryption certificates, there will be one signature on the CertReq. Verify it using the new signature public key contained in PublicKeyS. If it does not verify, return a CertRes with CertStatusCode set to sigValidationFail.

 If the RequestType indicated the renewal of a Signature certificate or the renewal of both a Signature and an Encryption certificate, there will be two signatures (SignerInfos) on the CertReq.

For the SignerInfo with a Null Issuer DN, verify the signature using the new signature public key contained in PublicKeyS. If it does not verify, return a CertRes with CertStatusCode set to sigValidationFail.

For the SignerInfo with the Issuer DN and Serial Number equal to the values in the renewed Signature certificate, verify the signature using the public key in that certificate. If it does not verify, return an Error Message with ErrorCode set to signatureFailure.

If the RequestType indicated a new or the renewal of an Encryption certificate, there will be one signature on the CertReq. Verify it using the public key from the EE’s Signature certificate. If it does not verify, return an Error Message with ErrorCode set to signatureFailure.

��Continued on next page

��styleref "Map Title"�CA Validates CertReq (EncX)�, continued

Validation �styleref "Block Label"�EncX� (continued)���

Step�Action���From the “CertReqTBS” data, store the RRPID, LID�EE, Chall�EE3, RequestType, LID�CA, Chall�CA, IDData, RegForm, CaBackKeyData, Thumbs, and the new Signature and/or Encryption certificates.���Verify that the RRPID and RequestDate match those received in the message wrapper. If it does not verify, return an Error Message with ErrorCode set to unknownRRPID. ���Verify that the Chall�CA received matches the one sent in the Me�AqCInitRes or RegFormRes. If it does not verify, return an Error Message with ErrorCode set to challengeMismatch.���Verify the PAN, if it’s included, according to the Brand’s policy; otherwise verify the AcctData. If it does not verify, return a CertRes with CertStatusCode set to rejectedByIssuer.���If the RequestType indicates a renewal, verify that the certificates being renewed have not been renewed before (that is, guarantee that a specific certificate is not renewed multiple times). If it does not verify, return a CertRes with CertStatusCode set to rejectedByCA.���Verify that the RegFormID is valid for the language, RequestType and BIN or PAN. If it does not verify, return a CertRes with CertStatusCode set to rejectedByCA.���If the sender of the CertReq was a Cardholder, store the algorithm and key included in CABackKeyData to use to encrypt the CertRes to be returned to the Cardholder.���Verify the invisible registration form items. If any invisible fields are required and are not populated correctly, return a CertRes with CertStatusCode set to rejectedByIssuer.���If the above checks are successful, verify the registration form items. For each item in the registration form, verify that the length, format and character type are correct. Verify that the required fields are present. If any errors are found, return the item number(s) and text messages indicating the error(s) in the FailedItems sequence in CertRes with CertStatusCode set to regFormAnswerMalformed. ��

�CA Validates CertReq (Enc)

Validation

Enc�The CA shall validate the CertReq (Enc) as follows.��

Step�Action���Receive the CertReq message from Receive Message (as described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).

Note: Decrypt and verify the signature of the CertReq message, in the inverse of the steps listed for Enc processing (described in Part I on page � PAGEREF block_EncX �83�). Verify the signature as specified for the CertReq(EncX) processing. If it does not verify, respond as specified for CertReq(EncX).���From the “CertReqData”, store the RRPID, LID�EE, Chall�EE3, RequestType, LID�CA, Chall�CA, IDData, RegForm, Thumbs, and the new Signature and/or Encryption certificates.���Verify that the Chall�CA received matches the one sent in the Me�AqCInitRes or RegFormRes. If it does not verify, return an Error Message with ErrorCode set to challengeMismatch.���Verify that the RRPID and RequestDate match the ones received in the message wrapper. If it does not verify, return an Error Message with ErrorCode set to unknownRRPID.���If the RequestType indicates a renewal, verify that the certificates being renewed have not been renewed before (that is, guarantee that a specific certificate is not renewed multiple times). If it does not verify, return a CertRes with CertStatusCode set to rejectedByCA.���Verify that the RegFormID is valid for the language, RequestType, and BIN. If it does not verify, return a CertRes with CertStatusCode set to rejectedByCA���Verify the invisible registration form items. If any invisible fields are required and are not populated correctly, return a CertRes with CertStatusCode set to rejectedByIssuer. ���If the above checks pass, verify the visible registration form items. For each item in the registration form, verify that the length, format and character type are correct. Verify that the required fields are present. If any errors are found, return the item number(s) and text messages indicating the error(s) in the CertRes with CertStatusCode set to regFormAnswerMalformed. ��Continued on next page

��styleref "Map Title"�CA Validates CertReq (Enc)�, continued

Failure�If validation fails, the CA shall prepare and send a CertRes message with the appropriate status. If the validation failure is due to errors in the CertReq, the CA shall indicate the errors in the CertRes and the EE application can re�send the CertReq with the corrected registration form. ��

Success�If the validation of all fields is successful, processing continues with financial institution authentication.��

�Financial Institution Authentication

Overview�The financial institution verifies the data in the CertReq prior to the generation of a certificate. The specific method used depends on the brand of certificate being issued and is outside the scope of SET.��

Status return�Using a process negotiated and implemented between the financial institution and the CA, the CertReq may or may not be accepted. If not, status is returned to the CA for use in composing CertRes CertStatus Codes.��

�CA Generates CertRes

CertRes overview�The CertRes contains either the requested certificates or the status of the certificate request. The CertRes will be signed and optionally encrypted, depending on the data that’s to be included in the message. If the CertRes is successful and is intended for the Cardholder, the message is encrypted using a common symmetric algorithm supported by both the CA and the Cardholder application. If an encryption algorithm cannot be negotiated between the CA and the Cardholder application, the request shall be rejected and the appropriate status returned. If the CertRes is intended for a Merchant or Payment Gateway or is returning status to a Cardholder, the message is signed but not encrypted. ��

Generate certificate�If the CertReq is successful the CA generates the certificate. See Chapter 4 for additional information about how the fields are populated.��Continued on next page

��styleref "Map Title"�CA Generates CertRes�, continued

Generate CertRes: Signed Data within Enveloped Data to Cardholder�If the CertReq is authentic, valid, and the CA has generated a certificate using the submitted key, a CertRes with completed status shall be returned. If the CertRes is intended for a Cardholder and included a key (in CaBackKeyData) to encrypt the CertRes, the CA shall generate the CertRes as Signed Data within Enveloped Data by performing the steps listed below. (Otherwise, see page � PAGEREF block_Gen_Signed_CertRes �191�.)��

Step�Action���Build “CertResData” as follows:

Copy RRPID, LID�EE, Thumbs, and Chall�EE3 from the CertReq.

Generate LID�CA, or copy from CertReq, if present.

Optionally populate the CardLogo URL, BrandLogo URL, CardCurrency, and/or the CardholderMessage (CaMsg).

Set the CertStatusCode to “Request Complete”.

Generate Nonce�CCA.

Compute and populate the thumbprints of the EE certificates, CertThumbs.

If the BrandCRLIdentifier is not specified in the Thumbs received in the CertReq, populate the BrandCRLIdentifier.

���Sign and envelope the data using EncK encapsulation (described in Part I on page � PAGEREF block_EncK �82�) using CertResData, as the “To Be Signed” data.

Sign the data with the CA Signature certificate.

Set the content type of SignedData to id�set�content�CertResData.

Include the new, certified EE Signature and/or Encryption certificates in the certificates portion of Signed Data.

Encrypt the signed data, using a CA generated initialization vector and the algorithm and key indicated by CaBackKeyData in the CertReq.

Set the content type of EncryptedData to id�set�content�CertResTBE.���Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the CertRes to the EE.��Continued on next page

��styleref "Map Title"�CA Generates CertRes�, continued

Generate Signed CertRes�The CertRes shall be signed but not encrypted if the EE is a Merchant or Payment Gateway.

If the CA is returning status in the CertRes, the EEMessage is included to convey information to the Cardholder, Merchant, or Payment Gateway. The following steps shall be used to generate the signed CertReq. ��

Step�Action���If the CA has generated a certificate that will be included in the CertRes, perform create CertResTBS, specified in step 1 on page � PAGEREF block_Gen_Signed_Env_CertRes �190�.���If the CA has not generated a certificate, i.e. has status other than “Request Complete”, build CertResData as follows:

Copy LID�EE and Chall�EE3 from the CertReq.

Optionally populate the EEMessage.

Populate the CertStatusCode from � REF _Ref368800897 * MERGEFORMAT �Table 19� on page � PAGEREF _Ref368800891 �194�.

If the CertStatusCode is set to regFormAnswerMalformed, populate the ItemNumbers and ItemReasons for each FailedItem in the registration form.���Sign the data using the Signature Processing on page � PAGEREF map_Signature �93�, using CertResData, as the “To Be Signed” data. Set the content type of SignedData to id�set�content�CertResData.

Note: Sign the data with the CA digital signature certificate.���Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the CertRes to the EE.��Continued on next page

��styleref "Map Title"�CA Generates CertRes�, continued

CertRes���

CertRes�< S(CA, CertResData), � EncK(CABackKeyData, CA, CertResData) >

The EncK version of this message is only needed if the optional CAMsg component is included in the CertRes and it is only used if CaBackKeyData is included in the CertReq.��CertResData�{RRPID, LID�EE, Chall�EE3, LID�CA, CertStatus, [CertThumbs], [BrandCRLIdentifier], [Thumbs]}��CABackKeyData�Copied from CertReq.��RRPID�Request/response pair ID.��LID�EE�Copied from prior CertReq.��Chall�EE3�Copied from CertReq. Requester checks for match with remembered value.��LID�CA �Copied from CertReq. If not present in the CertReq, new values are assigned.��CertStatus�{CertStatusCode, [Nonce�CCA], [EEMessage], [CaMsg], [FailedItemSeq]}��CertThumbs�If request is complete, the thumbprints of the enclosed signature and or encryption certificates.��BrandCRLIdentifier�See page 252.��Thumbs�Copied from CertReq.��CertStatusCode�Enumerated code indicating the status of the certificate request.��Nonce�CCA�If request is complete and from a cardholder, the other half of the ultimate shared secret between Cardholder and CCA. See PANData0 under “� REF blockCertReq * MERGEFORMAT �CertReq�”. Present only if EE is Cardholder. ��Table � SEQ Table * ARABIC �18�: CertRes�xe "CertRes"�

Continued on next page

��styleref "Map Title"�CA Generates CertRes�, continued

�styleref "Block Label"�CertRes� (continued)���

EEMessage�Message in natural language to be displayed on the EE system.��CAMsg�{[CardLogoURL], [BrandLogoURL], [CardCurrency], [CardholderMsg] }

If request is complete and from a cardholder.��FailedItemSeq�{FailedItem+}��CardLogoURL�URL pointing to graphic of card logo (issuer�specific).��BrandLogoURL�URL pointing to graphic of payment card brand logo.��CardCurrency�Cardholder billing currency.��CardholderMsg�A message in the Cardholder's natural language to be displayed by the software.��FailedItem�{ItemNumber, ItemReason}��ItemNumber�Indicates the position of the failed item in the list of registration fields. A value of 0 indicates the AcctData field.��ItemReason�The reason for the failure, as a text field in the language specified.���styleref "Caption"�Table 18: CertRes�, continued

Continued on next page

��styleref "Map Title"�CA Generates CertRes�, continued

CertStatus codes�The following table lists valid status codes for certificate requests. ��

Code�Meaning�Source��requestComplete�Certificate request approved �CA��invalidLanguage�Invalid language in initiation request�CA��invalidBIN�Certificate request rejected because of invalid BIN�Issuer or Acquirer��sigValidationFail�Certificate request rejected because of signature validation failure�CA��decryptionError�Certificate request rejected because of decryption error�CA��requestInProgress�Certificate request in progress�CA, Issuer, or Acquirer��rejectedByIssuer�Certificate request rejected by Issuer �Issuer��requestPended�Certificate request pending�CA, Issuer, or Acquirer��rejectedByAquirer�Certificate request rejected by Acquirer�Acquirer��regFormAnswerMalformed�Certificate request rejected because of malformed registration form item(s)�CA��rejectedByCA�Certificate request rejected by Certificate Authority�CA��unableToEncryptCertRes�Certificate authority didn’t receive key, so is unable to encrypt response to cardholder�CA��Table � SEQ Table * ARABIC �19�: Certificate Request Status Codes

�End Entity Processes CertRes

Validate CertRes�The EE validates the new certificate(s) by performing the following:��

Step�Action���Receive the CertRes message from Receive Message (described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).

Note: If the CertRes contains signed data within enveloped data, decrypt and verify the signature of the CertRes, in the inverse of the steps listed for EncK processing (described in Part I on page � PAGEREF block_EncK �82�), performing symmetric decryption using the algorithm and key that was sent to the CA in CaBackKeyData, in the CertReq.

The processing performed on the received certificates, CRLs, and BrandCRLIdentifier is described in “Receive Message ” (Part I, page � PAGEREF block_Receive_msg_wrapper �77�).���Verify, as specified in the “Thumbprint” processing steps (described in Part I on page � PAGEREF block_Sending_thumbs �79�), that the Thumbs received match those sent in the CardCInitReq message. If it does not verify, return an Error Message with ErrorCode set to thumbsMismatch.���Verify the LID�EE and Chall�EE match those sent in the CertReq. If it does not verify, return an Error Message with ErrorCode set to challengeMismatch.���If the CertStatusCode indicates “Certificate request complete”:

Retrieve the new certificates from the certificates portion of SignedData and validate the signatures.

Verify that the CertThumbs received match those sent in the CertReq. If it does not verify, return an Error Message with ErrorCode set to thumbsMismatch.

If a Cardholder and if they exist, retrieve the CaMsg, display the logos and CardholderMsg from the CaMsg, and store the CardCurrency.

Verify that the public keys in the certificate(s) correspond to the private keys. If it does not verify, return an Error Message with ErrorCode set to invalidCertificate.

If a Cardholder, perform the following additional steps:

Compute (Nonce�CCA (CardSecret) to obtain PANSecret.

Compute the Unique Cardholder ID, HMAC�SHA�1{{PAN, cardExpiry}, PANSecret}, that is, the Salted Hash, as described on page � PAGEREF block_Unique_Cardholder_ID �213�, and verify that the result matches the value in the certificate.��Continued on next page

��styleref "Map Title"�End Entity Processes CertRes�, continued

�styleref "Block Label"�Validate CertRes� (continued)���

Step�Action���If the CertStatusCode indicates “Malformed Registration Form Items”, some of the registration form items were in error. For each item that was in error, the EE application shall display the item number and the corresponding error message that was returned in the CertRes. The EE shall be allowed to re�enter fields and the EE application shall re�submit the CertReq as a new certificate request. ���If the CertStatusCode is set to requestinProgress or requestPended, the certificate may be picked up via submission of a CertInqReq at a later time. ���If CertStatusCode indicates any other status, display EEMessage.��

Validation failure�If the validation fails, the EE sends an error message to the CA indicating the failure. ��

�Section 7�Certificate Inquiry and Status Processing

Certificate Inquiry Protocol

Introduction�If the certificate is not returned immediately in the CertRes, the EE can request the status of its certificate request by sending a CertInqReq to the CA. The CertInqRes will return the certificate if it’s ready or will provide information as to when the certificate will be ready.��

����CertInqReq

���CertInqRes

���Figure � SEQ Figure * ARABIC �24�: Certificate Inquiry Protocol

�End Entity Generates CertInqReq

Generate CertInqReq�If the CertStatusCode of the CertRes indicated “Certificate Request in Process” or “Certificate Request Pending”, the EE generates the CertInqReq to retrieve the certificate as described below.��

Step�Action���Copy LID�CA3 from the CertRes into “CertInqReqTBS” data.���Generate a new RRPID.���Generate a new LID�EE.���Generate a new Chall�EE3.���Copy the LID�CA from the preceding CertRes.���Sign CertInqReqTBS using the Signature Processing on page � PAGEREF map_Signature �93�. Set the content type of SignedData to id�set�content�CertInqReqTBS.

The CertInqReq is signed the same way as the CertReq: i.e., there is a minimum of one and possibly two signatures, i.e. SignerInfos, on a CertInqReq. ���Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the CertInqReq to the CA.��

CertInqReq���

CertInqReq�S(EE, CertInqReqTBS)��CertInqReqTBS�{RRPID, LID�EE, Chall�EE3, LID�CA}��RRPID�Request/response pair identifier.��LID�EE�Copied from CertRes.��Chall�EE3�EE’s challenge to CA’s signature freshness.��LID�CA�Copied from CertRes.��Table � SEQ Table * ARABIC �20�: CertInqReq�xe "CertInqReq"�

�CA Processes CertInqReq

Processing of CertInqReq�The CA will process a CertInqReq as follows:��

Step�Action���Receive the CertInqReq message from Receive Message (described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).

The signature of the CertInqReqTBS will be validated in the same way as the CertReq is validated. If it does not verify, respond as specified for CertReq(EncX).���Verify that the RRPID matches the one sent in the message wrapper. If it does not verify, return an Error Message with ErrorCode set to unknownRRPID.���Using LID�CA as an index, determine the status of the CertReq.���If a certificate has been generated, send it to the EE in the CertInqRes, otherwise send an updated CertStatusCode in the CertInqRes.��

CA additional processing�The CA holds onto the CertRes or, if it contains newly issued certificates, the CertInqRes for a policy�definable period of time (possibly a week) to support re�transmission to the EE if needed.��

�CA Generates CertInqRes

Processing�After processing a CertInqReq, the CA will generate a CertInqRes. The CertInqRes has the same message content and format as the CertRes. It is generated using the same processing steps described for the CertRes. ��

Step�Action���As appropriate, perform either:

the steps to generate CertRes Signed Data within Enveloped Data (see page � PAGEREF block_Gen_Signed_Env_CertRes �190�), or

the steps to generate CertRes Signed Data (see page � PAGEREF block_Gen_Signed_CertRes �191�).

Exceptions: Copy the RRPID, LID�EE and Chall�EE3 received in the CertInqReq rather than that from the original CertReq.���Invoke Compose Message Wrapper (described in Part I on page � PAGEREF block_compose_msgwrpr �76�) to send the CertInqRes to the EE.��

CertInqRes data�The CertInqRes contains the same data as the CertRes message. ��

CertInqRes�Identical to a CertRes; see page � PAGEREF blockCertRes �192�.��

�End Entity Processes CertInqRes

CertInqRes processing�The SET application will process a CertInqRes using the same steps as to process a CertRes.��

Step�Action���Receive the CertInqRes message from Receive Message (described in Part I on page � PAGEREF block_Receive_msg_wrapper �77�).

Note: If the CertInqRes contains signed data within enveloped data, decrypt and verify the signature of the CertInqRes, in the inverse of the steps listed for EncK processing (described in Part I on page � PAGEREF block_EncK �82�), performing symmetric decryption using the algorithm and key that was sent to the CA in CaKey, in the CertReq.���Perform steps 2 through 5 of the CertRes processing described on page � PAGEREF map_EE_Process_CertRes �195�.��

�Chapter 3�Certificate Revocation

Chapter Overview

Introduction�This chapter describes the revocation or cancellation process for SET certificates. A compromised certificate is “revoked” if it is placed on a CRL. A compromised certificate is “canceled” if a mechanism other than a CRL is used to prevent the certificate from being used.��

Organization�Chapter 3 includes the following topics:

Cardholder Certificate Cancellation

Merchant Certificate Cancellation

Payment Gateway Certificate Revocation

CA Compromise Recovery��

Assumptions�In defining the certification revocation concepts, the following assumptions were made:

It is a requirement to minimize change to the Issuers’ existing payment card system to support certificate revocation and to maximize reuse of the existing payment card infrastructure where applicable.

A Cardholder certificate is bound to the payment card account. When a certificate is canceled, the associated payment card number will be canceled. When a payment card is lost/stolen or the account is terminated, the certificate is also no longer usable.

When a Merchant’s certificate is canceled, only the Acquirer needs to know since all payments are authorized via the Acquirer. If a Cardholder attempts to purchase from a Merchant whose certificate has been canceled, the Acquirer will reject the purchase. Furthermore, a person in possession of a compromised private key from a Merchant cannot extract payment card numbers directly from Cardholder Purchase Requests since the account numbers are encrypted with the Payment Gateway’s public key.��

�Section 1�Cardholder Certificate Cancellation

Purpose�A Cardholder’s certificate and associated private key are used to provide and authenticate the payment card information in the electronic payment protocol. If the private key corresponding to the public key in a certificate is compromised, the associated certificate shall be canceled. ��

Issuer�based cancellation approach�Since payment requests shall go to the Cardholder’s Issuer for payment authorization, the Issuer can maintain the Cardholder certificate canceled status in the context of the payment card exception files (hotlists) maintained today. When a payment authorization request is received from the Acquirer for an account with a canceled certificate, the Issuer will reject the request because the account number has been canceled. ��

�Section 2�Merchant Certificate Cancellation

Purpose�A Merchant’s certificates and associated private keys are used to provide and authenticate the Merchant’s identity in the electronic payment protocol. If the Merchant’s private key in a certificate is compromised, the associated certificates must be canceled to avoid an adversary impersonating the Merchant. ��

Acquirer�based cancellation approach �As Merchants terminate their association with a specific Acquirer, Acquirer’s have the capability to reject all payment requests from that Merchant. The Payment Gateway will either use the existing system to support Merchant authentication, or it will maintain a local list of Merchant certificates that are not to be accepted.��

�Section 3�Payment Gateway Certificate Revocation

Background�A Payment Gateway has two certificates:

Key Encryption Certificate, used for encrypting Payment Instructions

Signature Certificate

The storage of the private keys associated with these certificates is determined by the brand’s policy. However, the preferred method of storage is on hardware cryptographic modules with restricted physical access. ��

Compromise recovery�To protect against a cryptanalytic attack and to support compromise recovery, relatively frequent re-keying of the encryption key is desired. Any damage caused by a compromise will be limited to that key’s usage period, and the adoption of this policy by a brand may deter would�be adversaries.��

Revoking certificate�In the event that one or more of the Payment Gateway’s private keys are compromised (or suspected of compromise), the Acquirer shall immediately remove the private keys from the Payment Gateway.

The certificates corresponding to compromised Payment Gateway private keys will be placed on Certificate Revocation Lists (CRLs). These CRLs will be generated and distributed by the Payment Gateway CA.��

Distribute new certificate�Once the new certificates are distributed to the Payment Gateway, the Merchants will receive the new certificate using the same method as Payment Gateway certificate renewals. As Merchants receive certificates with more recent validity dates, the older certificates are purged from the system (that is, the suspect certificate will be effectively removed from the system as soon as a newer Payment Gateway certificate is received by the Merchants).��

�Section 4�CA Compromise Recovery

Overview�The likelihood of a successful attack against a CA is very low. However, if a successful attack were to occur, a new CA certificate shall be distributed and the old certificate shall be revoked.��

Use of CA CRL�The identity of the compromised CA certificate is included in a CA CRL and distributed to all entities in the system. A list of all up�to�date CRLs in effect is contained within the BrandCRLIdentifier.��

Distribution of CA CRL�The CA CRL is distributed in existing messages.

The CA distributes the CRL to Payment Gateways in the Me�AqCInitRes message with each renewal.

The CA distributes CRLs to the Cardholder in all downstream response messages.

The Payment Gateway distributes the CRL to Merchants in the AuthRes message when the ThumbPrint in the AuthReq does not include one or more of the latest CRLs.

The Merchant distributes the CA CRL to the Cardholder in the PInitRes or PRes when the PInitReq or PReq Thumbprints do not include one or more of the latest CRLs.��

BrandCRL Identifier�The BrandCRLIdentifier contains a list of all CA CRLs that are current. An entity uses the BrandCRLIdentifier to check that it holds all of the up�to�date CRLs. The BrandCRLIdentifier is included in all downstream response messages.��

�Chapter 4�Certificate Format

Chapter Overview

Introduction�This section contains a description of the X.509 Version 3 certificate format and certificate extensions used in SET. The certificate format includes the use of public and private extensions to support all SET certificate requirements.��

Organization�Chapter 4 includes the following sections:��

Section�Title�Contents�Page��1�� REF P2C4s1 * MERGEFORMAT �X.509 Certificate Definition��Describes all of the fields in the basic X.509 certificate.�� PAGEREF P2C4s1 �208���2�� REF P2C4s2 * MERGEFORMAT �X.509 Extensions��Describes all of the fields in the standard X.509 extensions used in SET.�� PAGEREF P2C4s2 �214���3�� REF P2C4s3 * MERGEFORMAT �SET Private Extensions��Describes all of the fields in the SET specific extensions.�� PAGEREF P2C4s3 �228���4�� REF P2C4s4 * MERGEFORMAT �Certificate Profiles��Describes all certificate and extension fields and identifies how/when they are used for each of the different types of certificates used in SET.�� PAGEREF P2C4s4 �239���

�Section 1�X.509 Certificate Definition

X.509 Certificate Data Definitions

Format and value restrictions�The table below defines the format and value restrictions for each field in the X.509 certificate. ��

Name�Format and Value Restrictions�Description��Version�Integer�Indicates the certificate version. Always set to 3 indicating Version 3.��SerialNumber�Integer�Unique serial number assigned by the CA that issued the certificate.��Signature� .AlgorithmIdentifier�OID and type�Defines the algorithm used to sign the certificate.��Issuer�Name�Contains the Distinguished Name (DN) of the CA that issued the certificate.��Validity

 .notBefore�UTC Time�Specifies when the certificate becomes active.��Validity

 .notAfter�UTC Time�Specifies when the certificate expires. If a Cardholder’s certificate, the Validity period shall not extend beyond the card’s expiration date. ��Subject�Name�Contains the Distinguished Name of the entity owning the key. ��SubjectPublicKeyInfo� .algorithm� .AlgorithmIdentifier�OID and type�Specifies which algorithms can be used with this key.��SubjectPublicKeyInfo� .subjectPublicKey�Bit string�Contains the public key provided in the certificate request. ��Table � SEQ Table * ARABIC �21�: X.509 Certificate Data Definitions

Continued on next page

��styleref "Map Title"�X.509 Certificate Data Definitions�, continued

�styleref "Block Label"�Format and value restrictions� (continued)���

Name�Format and Value Restrictions�Description��IssuerUniqueID��Not used in SET.��SubjectUniqueID��Not used in SET.��Extensions� .extnId�OID format�Contains the extension’s OID as defined by X.509 or SET.��Extensions� .critical�Boolean; 0 false (Default) , 1 true�Each extension description states how this field will be set. ��Extensions� .extnValue��The extension data. ��� REF tbl_X509_cert_data_defs * MERGEFORMAT �Table 21: X.509 Certificate Data Definitions�, continued

�Certificate Subject Name Format

Name fields�The following Object Identifiers (OIDs) shown in brackets are needed for defining items with a format of Name in SET Certificates:

countryName [2 5 4 6]

organizationName [2 5 4 10]

organizationalUnitName [2 5 4 11]

commonName [2 5 4 3]

The following paragraphs describe the attributes which comprise the Subject Distinguished Name for each SET entity indicated in the CertificateType extension. ��

Name OIDs ASN.1�id�at�countryName OBJECT IDENTIFIER ::= { id�at 6 }

id�at�organizationName OBJECT IDENTIFIER ::= { id�at 10 }

id�at�organizationalUnitName OBJECT IDENTIFIER ::= { id�at 11 }

id�at�commonName OBJECT IDENTIFIER ::= { id�at 3 }��

Cardholder �countryName=<Country of Issuing Financial Institution>

organizationName=<BrandID>

organizationalUnitName=<Name of Issuing Financial Institution>

organizationalUnitName=<Optional � Promotional Card Name>

commonName=<Unique Cardholder ID>

Note: To distinguish between the two organizationalUnitNames, the organizationalUnitName representing the “Name of Issuing Financial Institution” shall appear first in the generated Cardholder certificate. ��

Merchant �countryName=<Country of Acquiring Financial Institution>

organizationName=<BrandID>

organizationalUnitName=<Name of Acquiring Financial Institution>

commonName=<Name of Merchant as printed on Cardholder statement>��

Payment gateway �countryName=<Country of Acquiring Financial Institution>

organizationName=<BrandID>

organizationalUnitName=<Name of Acquiring Financial Institution>

commonName=<Unique Payment Gateway ID>��Continued on next page

�Certificate Subject Name Format, continued

Cardholder Certificate Authority�countryName=<Country of Issuing Financial Institution>

organizationName=< BrandID>

organizationalUnitName=<Descriptive Name>

commonName=<Optional � Unique ID>��

Merchant Certificate Authority�countryName=<Country of Acquiring Financial Institution >

organizationName=< BrandID >

organizationalUnitName=<Descriptive Name>

commonName=<Optional � Unique ID>��

Payment Gateway Certificate Authority�countryName=<Country of Acquiring Financial Institution >

organizationName=< BrandID >

organizationalUnitName=<Descriptive Name>

commonName=<Optional � Unique ID>��

Geo�Political Certificate Authority�countryName=<Country of Geo�political organization>

organizationName=< BrandID >

organizationalUnitName=<Descriptive Name>

commonName=<Optional � Unique ID>��

Brand Certificate Authority�countryName=<Country of the Brand>

organizationName=< BrandID>

organizationalUnitName=<Descriptive Name>

commonName=<Optional � Unique ID>��

Root Certificate Authority�countryName=<Country where CA is located>

organizationName=<SET Root>

commonName=<Optional � Unique ID>��

�Name Fields

Definitions�The Name fields in the Certificate Subject Name are defined as follows.��

Country�The 2 character ISO 3166 country code.��BrandID�<Brand Name>:<Product >, where the Product name is optional.��Brand Name�The brand of payment card. To be defined by the payment card brand.��Product Type�This optional field defines the type of product within the specific brand.��Descriptive Name�This is a descriptive name of the entity responsible for issuing the certificates under this CA. Examples include:

Name of financial institution

Name of the organization operating the CA

Name of the brand

Name of the entity responsible for approving the certificates

Brand and financial institution policies may restrict the choices available for Descriptive Name.��Promotional Card Name�This optional field contains the promotional name of the card. Examples include Frequent Flyer Program, Affinity Program etc.��Name of Financial Institution�The name of the issuing financial institution.��Unique Cardholder ID�The unique Cardholder ID in the Cardholder’s certificate is the keyed�hashed account number. See detailed description on the next page. ��Unique Payment Gateway ID�This field contains the BIN followed by an Acquirer or brand assigned serial number. This field is formatted as <BIN:Serial Number>. The serial number allows each Payment Gateway associated with the same Acquirer to be uniquely identified. Multiple certificates may exist for a BIN within a Brand. ��Continued on next page

��styleref "Map Title"�Name Fields�, continued

Unique Cardholder ID�The unique Cardholder ID in the Cardholder’s certificate is the keyed�hashed account number. The PAN is masked using the shared secret value, PANSecret, that’s comprised of a Cardholder secret value (CardSecret) and a CA secret value (Nonce�CCA). The keyed�hashed value is computed using the HMAC�SHA1 algorithm as specified in RFC 2105. If there are any differences between the following specification and that specified in RFC 2105, the RFC shall take precedence. The HMAC�SHA1 function is defined in terms of a key, K, and the “Text” that is masked by the keyed�hash using the following function:

hash(K (opad | hash((K (ipad) | text))

where the “(” operator designates XOR, and the ‘|’ operator denotes concatenation.

K, Text, ipad, and opad are defined as follows for SET:���K�Equal to PANSecret. PANSecret is a 20 byte value computed by Exclusive OR’ing the DER decoded values of CardSecret (the Cardholder nonce) and Nonce�CCA (the CA nonce).���Text�Equal to the DER encoded value of Text, shown below, and comprised of the PAN and the CardExpiry.

 Text ::= SEQUENCE {

 pan PAN,

 cardExpiry CardExpiry

 }

 PAN ::= NumericString (SIZE(1..19))

 CardExpiry ::= NumericString (SIZE(6)) �� YYYYMM

 expiration date on card���ipad�64 repetitions of the byte x’36’ = b’00110110’, (6)���opad�64 repetitions of the byte x’5C’ = b’01011100’, (\)���K is padded with zeros out to a 64 byte string.

Following the HMAC computation, the resulting digest shall be base64 encoded prior to being placed in the certificate commonName field.��

�Section 2�X.509 Extensions

Section Overview

Purpose�This section describes the use of the following X.509 extensions for use in SET:

AuthorityKeyIdentifier

KeyUsage

PrivateKeyUsagePeriod

CertificatePolicies

SubjectAltName

BasicConstraints

IssuerAltName��

�AuthorityKeyIdentifier Extension

Overview�A CA may have more than one certificate, either for functionally different purposes, or as key updating occurs. This extension is used to identify which CA certificate shall be used to verify the certificate’s signature. This extension contains the following fields:

Key Identifier

Certificate Issuer

Certificate Serial Number

In SET, the Certificate Issuer and the Certificate Serial Number are always set and the Key Identifier is not used. The Issuer Distinguished Name and Serial Number are inherited from the signing CA’s certificate and are used to populate the Certificate Issuer and Serial Number of this extension. ��

Criticality�This extension is non�critical.��

Restrictions���

Name�Format and Value Restrictions�Description��authorityKeyIdentifier� .AuthorityKeyId� .keyIdentifier��Not used in SET.��authorityKeyIdentifier� .AuthorityKeyId� .certIssuer�Name�Contains the Issuer DN of the issuing certificate authority’s certificate.��authorityKeyIdentifier� .AuthorityKeyId� .certSerialNumber�Positive Integer�Contains the serial number of the issuing certificate authority’s certificate. ��Continued on next page

��styleref "Map Title"�AuthorityKeyIdentifier Extension�, continued

ASN.1�authorityKeyIdentifier EXTENSION ::= {

 SYNTAX AuthorityKeyIdentifier

 IDENTIFIED BY id�ce�authorityKeyIdentifier

 }

 AuthorityKeyIdentifier ::= SEQUENCE {

 keyIdentifier [0] KeyIdentifier OPTIONAL,

 authorityCertIssuer [1] GeneralNames OPTIONAL,

 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL

 } (WITH COMPONENTS { keyIdentifier ABSENT,

 authorityCertIssuer PRESENT, authorityCertSerialNumber PRESENT })��

�KeyUsage Extension

Overview�The KeyUsage extension is an X.509 extension that indicates how the public key in the certificate may be used.��

SET’s key usages�A SET certificate may have the following key usage(s) assigned:

digital signature,

certificate signature,

CRL signature,

data encryption and key encryption, or

certificate signature and CRL signature.��

Criticality�This extension is critical.��

Restrictions���

Name�Format and Value Restrictions�Description��keyUsage� .keyUsage�0, 5, 6, or {2, 3} or {5, 6} only�Indicates whether the public key contained in the certificate may be used for signature verification, encryption, etc.��Continued on next page

�KeyUsage Extension, continued

KeyUsage and BasicConstraints �The values set in the KeyUsage and BasicConstraints extensions shall not conflict. The following table indicates the KeyUsage and the BasicConstraints CA values for each EE or CA certificate. ��

SET Entity Type�KeyUsage Value�BasicConstraints CA Value�Description��EE�0�EE�Public key may be used to verify message signatures.��EE�2 & 3�EE�Public key may be used to encrypt keys and data in the OAEP envelope.��CA�0�EE�Public key may be used to verify message signatures.��CA�2&3�EE�Public key may be used to encrypt keys and data in the OAEP envelope.��CA�5�CA�Public key may be used to verify certificate signatures.��CA�6�EE�Public key may be used to verify CRL signatures.��CA�5&6�CA�Public key may be used to verify certificate and CRL signatures.��

ASN.1�keyUsage EXTENSION ::= {

 SYNTAX KeyUsage

 CRITICAL TRUE

 IDENTIFIED BY id�ce�keyUsage

}

KeyUsage ::= BIT STRING {

 digitalSignature (0),

 nonRepudiation (1),

 keyEncipherment (2),

 dataEncipherment (3),

 keyAgreement (4),

 keyCertSign (5), �� For use in CA�certificates only

 cRLSign (6) �� For use in CA�certificates only

}��

�PrivateKeyUsagePeriod Extension

Overview�The PrivateKeyUsagePeriod extension is an X.509 extension used to delimit the period of time that the private key corresponding to the certificate is valid. This extension is only used in signature certificates � it is not applicable to encryption certificates. ��

Criticality�This extension is non�critical.��

Restrictions���

Name�Format and Value Restrictions�Description��privateKeyUsagePeriod�. PrivateKeyUsagePeriod� .notBefore�Date and Generalized Time �The start date and time of the private key’s validity period. ��privateKeyUsagePeriod�. PrivateKeyUsagePeriod� .notAfter�Date and Generalized Time�The end date and time of the private key’s validity period.��

ASN.1�privateKeyUsagePeriod EXTENSION ::= {

 SYNTAX PrivateKeyUsagePeriod

 IDENTIFIED BY id�ce�privateKeyUsagePeriod

}

PrivateKeyUsagePeriod ::= SEQUENCE {

 notBefore [0] GeneralizedTime OPTIONAL,

 notAfter [1] GeneralizedTime OPTIONAL

} (WITH COMPONENTS { ..., notBefore PRESENT } |

 WITH COMPONENTS { ..., notAfter PRESENT })��

�CertificatePolicies Extension

Overview�This extension specifies the policies governing the use of the certificate. A certificate policy is a set of rules defining the use of the certificate in the SET application. The policy is identified in the certificate by an Object Identifier. ��

Policy�CertificatePolicies is an X.509 extension containing a list of one or more certificate policies. Each certificate policy is denoted by a globally unique Object Identifier and may optionally contain corresponding qualifiers. SET certificates shall contain at least one policy Object Identifier (OID), that of the SET Root policy. The SET Root certificate shall contain this policy OID and this policy shall be inherited by all subordinate certificates. SET certificates shall only be used according to the rules specified in the policy. ��

Qualifier�Qualifiers to the policy may be included in this extension. SET uses qualifiers to provide pointers to the actual policy statement and to add qualifying policies to the Root policy. SET defines the following qualifiers:

a root policy qualifier

additional policies and qualifiers��

Root Policy Qualifier�The root policy qualifier contains information related to the location and content of the SET root policy:

policy URL

policy Email

policy Digest

terse Statement

Each of the above qualifiers is optional. The policy URL and policy Email contain a URL and an e�mail address where a copy of the root policy statement can be obtained. A hash of the policy may be included in policy Digest and the value may be compared with the hash of the policy obtained from the URL. ��Continued on next page

��styleref "Map Title"�CertificatePolicies Extension�, continued

Additional Policy Qualifiers�In addition to the root policy qualifier, each CA (Brand, Geopolitical, or MCA, CCA, PCA) may add one qualifying statement to the root policy in a subordinate certificate. The additional qualifier is a policy statement for that CA. Like the Root policy, it is indicated by an Object Identifier and qualified using the same indicators specified above. The signing CA also indicates its certificate type as a qualifier, so that a subordinate certificate holder may determine which policy statement corresponds to a given CA.

There may be a maximum of four policy Object Identifiers in a SET EE certificate: the Root CA’s, the Brand CA’s, the Geopolitical CA’s, and the Cardholder, Merchant, or Payment Gateway CA’s. ��

Certificate Generation�A generated certificate shall inherit all of the policy information of the SET CA signing certificate. Further, the subordinate certificate may contain an additional policy that is inserted by the signing CA. ��

Criticality�This extension is critical.��

Restrictions���

Name�Format and Value Restrictions�Description��policy�Object ID�The OID which points to the Root policy statement. The policy may be obtained from the URL or e�mail address provided in the qualifiers.��policyQualifierId�Object ID �Set to id�set�setQualifier.��qualifier�SETQualifier�Contains optional qualifiers to the Root policy.

Contains additional optional qualifying policies and their qualifiers.��SETQualifier� .policyURL.�IA5String�URL where a copy of the policy statement may be found.��Continued on next page

��styleref "Map Title"�CertificatePolicies Extension�, continued

�styleref "Block Label"�Restrictions� (continued)���

SETQualifier� .policyEmail�IA5String�E�mail address where a copy of the policy statement may be found.��SETQualifier� .policyDigest�Octet String�The hash of the policy statement, computed using the indicated digestAlgorithm.��SETQualifier� .terseStatement�DirectoryString�A statement declaring any disclaimers associated with the issuing of the certificate.��SETQualifier

.additionalPolicies

 .policyOID�Object ID�The OID which points to the CA’s policy statement. The policy may be obtained from the URL or e�mail address provided in the associated qualifiers. ��SETQualifier

.policyAddedBy�Certificate Type�Indicates the CA that the policy corresponds to and that added the policy to the generated certificate.��Continued on next page

��styleref "Map Title"�CertificatePolicies Extension�, continued

ASN.1�certificatePolicies EXTENSION ::= {

 SYNTAX CertificatePoliciesSyntax

 CRITICAL TRUE

 IDENTIFIED BY id�ce�certificatePolicies

}

CertificatePoliciesSyntax ::= SEQUENCE SIZE(1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {

 policyIdentifier CertPolicyId,

 policyQualifiers SEQUENCE SIZE(1..MAX) OF

 PolicyQualifierInfo OPTIONAL

}

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {

 policyQualifierId CERT�POLICY�QUALIFIER.&id

 ({SupportedPolicyQualifiers}),

 qualifier CERT�POLICY�QUALIFIER.&Qualifier

 ({SupportedPolicyQualifiers}{@policyQualifierId})

 OPTIONAL

}

SupportedPolicyQualifiers CERT�POLICY�QUALIFIER ::= {

 setPolicyQualifier,

 ...

 }

CERT�POLICY�QUALIFIER ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Qualifier OPTIONAL

}

WITH SYNTAX {

 POLICY�QUALIFIER�ID &id

 [QUALIFIER�TYPE &Qualifier]

}�� Continued on next page

��styleref "Map Title"�CertificatePolicies Extension�, continued

ASN.1 continued�setPolicyQualifier CERT�POLICY�QUALIFIER ::= {

 POLICY�QUALIFIER�ID id�set�setQualifier

 QUALIFIER�TYPE SetPolicyQualifier

 }

SetPolicyQualifier ::= SEQUENCE {

 rootQualifier SETQualifier,

 additionalPolicies AdditionalPolicies OPTIONAL

 }

AdditionalPolicies ::= SEQUENCE SIZE(1..3) OF AdditionalPolicy

AdditionalPolicy ::= SEQUENCE {

 policyOID CertPolicyId OPTIONAL,

 policyQualifier SETQualifier OPTIONAL,

 policyAddedBy CertificateTypeSyntax

 }

SETQualifier ::= SEQUENCE {

 policyDigest DetachedDigest OPTIONAL,

 terseStatement SETString {ub�terseStatement} OPTIONAL,

 policyURL [0] URL OPTIONAL,

 policyEmail [1] URL OPTIONAL

 }��

�SubjectAltName Extension

Overview�This extension contains one or more alternate subject names, using any of a variety of name forms. This field is optional, and is only included if the requesting entity specifies an alternate name in the request.��

Criticality�This extension is non�critical.��

Restrictions���

Name�Format and Value Restrictions�Description��subjectAltName� .GeneralNames�Name�One or more alternate names for the distinguished name in the certificate; the alternate name may be an e�mail address, a URL, etc. ��

ASN.1�subjectAltName EXTENSION ::= {

 SYNTAX GeneralNames

 IDENTIFIED BY id�ce�subjectAltName

}

GeneralNames ::= SEQUENCE SIZE(1..MAX) OF GeneralName

1538 GeneralName ::= CHOICE {

1543 directoryName [4] EXPLICIT Name,

1545 uniformResourceIdentifier [6] IA5String,

1547 registeredID [8] OBJECT IDENTIFIER

1548 �� Other choices defined in X.509 not used by SET

1549 }��

�BasicConstraints Extension

Overview�This extension indicates whether the certified subject may act as a CA or an EE. If the certified subject may act as a CA, the extension indicates by path length the number of levels of sub�CAs that the CA may authenticate. This extension shall be used in validating certificates used to sign other certificates��

Criticality�This extension is critical.��

Restrictions���

Name�Format and Value Restrictions�Description��basicConstraints� .basicConstraints� .cA�Boolean�True for all CAs and subordinate CAs; false for End Entities.��basicConstraints� .basicConstraints� .pathLenConstraint�Integer; only set if the subjectType is a CA�Indicates the number of levels of CAs that this certificate may sign certificates for. For example, a zero in this field means that the CA certificate may only be used to sign EE certificates.��

Usage�The BasicConstraints cA shall be set to CA only if the KeyUsage extension is set to either KeyCertSign or the combination KeyCertSign plus CRLSign. Otherwise (and including all EE certificates), cA shall always be set to false. Note that a CA may own certificates in which the basicConstraints.cA is false and may use the keys associated with such certificates in the manner specified in the KeyUsage.��

ASN.1�basicConstraints EXTENSION ::= {

 SYNTAX BasicConstraintsSyntax

 CRITICAL TRUE

 IDENTIFIED BY id�ce�basicConstraints

}

BasicConstraintsSyntax ::= SEQUENCE {

 cA BOOLEAN DEFAULT FALSE,

 pathLenConstraint INTEGER (0..MAX) OPTIONAL

}��

�IssuerAltName Extension

Overview�This extension contains one or more alternate names for the Issuer certificate. This field is optional, and is only included if the issuing CA chooses to set this extension.��

Criticality�This extension is non�critical.��

Restrictions���

Name�Format and Value Restrictions�Description��issuerAltName� .GeneralNames� .GeneralName�Name�One or more alternate names for the distinguished name in the certificate; the alternate name may be an e�mail address, a URL, etc. ��

ASN.1�issuerAltName EXTENSION ::= {

 SYNTAX GeneralNames

 IDENTIFIED BY id�ce�issuerAltName

}

GeneralName ::= CHOICE {

directoryName [4] EXPLICIT Name,

uniformResourceIdentifier [6] IA5String,

registeredID [8] OBJECT IDENTIFIER

�� Other choices defined in X.509 not used by SET

 }��

�Section 3�SET Private Extensions

Section Overview

Purpose�This section defines the following private extensions for SET:

HashedRootKey

CertificateType

MerchantData

CardCertRequired

Tunneling

SETExtensions��

�HashedRootKey Private Extension

Overview�This extension is used only in Root certificates and contains the thumbprint (hash) of the next root key. The hash is computed using SHA�1 over the DER encoded subjectPublicKeyInfo structure as follows:

HashedRoot := DD[subjectPublicKeyInfo]

The subjectPublicKeyInfo contains the public key algorithm identifier and the public key for the next Root and is used to authenticate the next Root certificate.��

Criticality�This extension is critical.��

Restrictions���

Name�Format and Value Restrictions�Description��hashedRootKey

.DigestedData� .digestAlgorithm� .algorithm�OID �The OID of the hashing algorithm used over the root key. In SET, SHA�1 is used. ��HashedRootKey

.DigestedData� .digestAlgorithm� .parameters��Set to NULL.��hashedRootKey

.DigestedData

.contentInfo

 .contentType�OID�Set to id�set�rootKeyThumb.��hashedRootKey

.DigestedData

.contentInfo

 .content��Omitted.��hashedRootKey

.DigestedData

.digest� �Octet String�The hash of the DER encoded subjectPublicKeyInfo. ��

�HashedRootKey Private Extension, continued

ASN.1�hashedRootKey EXTENSION ::= { �� Only in root certificates

 SYNTAX HashedRootKeySyntax

 CRITICAL TRUE

 IDENTIFIED BY id�set�hashedRootKey

}

HashedRootKeySyntax ::= RootKeyThumb

RootKeyThumb ::= SEQUENCE {

 rootKeyThumbprint DD { SubjectPublicKeyInfo{{SupportedAlgorithms}} }

}��

�CertificateType Private Extension

Overview�The certificate type is used to distinguish between the different entities. For the following EE or CA types the certificate can have only one type:

Cardholder (CARD)

Merchant (MER)

Payment Gateway (PGWY)

Geo�political Certificate Authority (GCA)

Brand Certificate Authority (BCA)

Root Certificate Authority (RCA)

For the following CA types, multiple certificate types are possible. For example, the certificate type can be both a Cardholder Certificate Authority and a Merchant Certificate Authority.

Cardholder Certificate Authority (CCA)

Merchant Certificate Authority (MCA)

Payment Certificate Authority (PCA)

This extension is used to identify the entity with respect to the SET CA hierarchy. It is independent of the CA indicator in the Basic Constraints extension that indicates whether the certificate may be used to verify certificate signatures.

This extension is included in every SET certificate. ��

Criticality�This extension is critical.��

Restrictions���

Name�Format and Value Restrictions�Description��certificateType� .certificateTypeSyntax�One value of 0 � 9 or any grouping of values 3, 4, and 5�Specifies what type of entity will be using the certificate. This field is based on the type of certificate request received. ��Continued on next page

��styleref "Map Title"�CertificateType Private Extension�, continued

ASN.1�certificateType EXTENSION ::= {

 SYNTAX CertificateTypeSyntax

 CRITICAL TRUE

 IDENTIFIED BY id�set�certificateType

}

CertificateTypeSyntax ::= BIT STRING {

 card (0),

 mer (1),

 pgwy (2),

 cca (3),

 mca (4),

 pca (5),

 gca (6),

 bca (7),

 rca (8),

 acq (9)

}��

�MerchantData Private Extension

Overview�In the payment protocol, an Acquirer needs certain information about Merchants. This extension contains all of the data needed by the Payment Gateway. This data is obtained from the Merchant in the certificate request processing (in the registration form). The Merchant’s name and address in this extension can be represented multiple times in different languages. The information shall be listed in the order of language preference. ��

Merchant Data in Multiple Languages�The Merchant’s name and address may be repeated in multiple languages in this extension. If multiple names are included, they shall be placed in the order of the certificate holder’s language preferences. The following set of fields may be included in multiple languages:

Merchant name

City

State/province

Postal code

Country ��

Criticality�This extension is non�critical.��Continued on next page

��styleref "Map Title"�MerchantData Private Extension�, continued

Restrictions���Name�Format and Value Restrictions�Description��MerID�Character String; Required�The merchant identification assigned by the Acquirer��MerAcquirerBIN�Numeric String; Required�The BIN used for settlement of the merchant’s transactions with the Acquirer��MerCountry�INTEGER�The ISO�3166 numeric country code for the location of the merchant��MerAuthFlag�BOOLEAN:

(FALSE) not authorized to receive Cardholder information

(TRUE) authorized to receive Cardholder information�Some Acquirers allow certain Merchants to receive additional Cardholder payment information in order to accommodate non�SET business processing of transactions.��The following items may appear more than once to carry information about the merchant in multiple character sets or translated into multiple languages:��Language�Character String; Optional�RFC 1766 definition of language��Name�Character String; Required�The name by which the merchant is known to its customers��City�Character String; Required�The name of the city where the merchant is located��StateProvince�Character String; Optional�The state or province where the merchant is located��PostalCode�Character String; Optional�The postal code for the merchant’s location��CountryName�Character String; Required�The name of the country (corresponds to MerCountry)��Continued on next page

��styleref "Map Title"�MerchantData Private Extension�, continued

ASN.1�merchantData EXTENSION ::= {

 SYNTAX MerchantDataSyntax

 IDENTIFIED BY id�set�merchantData

}

MerchantDataSyntax ::= SEQUENCE {

 merID MerchantID,

 merAcquirerBIN BIN,

 merNameSeq MerNameSeq,

 merCountry CountryCode,

 merAuthFlag BOOLEAN DEFAULT TRUE

}

 MerNameSeq ::= SEQUENCE SIZE(1..32) OF MerNames

 MerNames::= SEQUENCE {

 language [0] Language OPTIONAL,

 name [1] EXPLICIT SETString { ub�merName },

 city [2] EXPLICIT SETString { ub�cityName },

 stateProvince [3] EXPLICIT SETString { ub�stateProvince } OPTIONAL,

 postalCode [4] EXPLICIT SETString { ub�postalCode } OPTIONAL,

 countryName [5] EXPLICIT SETString { ub�countryName }

 }��

�CardCertRequired Private Extension

Overview�The CardCertRequired private extension indicates whether the Payment Gateway supports exchanges with Cardholders that don’t have a certificate. ��

Criticality�This extension is non�critical.��

Restrictions���

Name�Format and Value Restrictions�Description��cardCertRequired�Boolean�Indicates whether a Cardholder’s certificate is required by the brand ��

ASN.1�cardCertRequired EXTENSION ::= {

 SYNTAX BOOLEAN

 IDENTIFIED BY { id�set�cardCertRequired }

 }��

�Tunneling Private Extension

Overview�The Tunneling private extension indicates whether the CA or the Payment Gateway supports the “tunneling” of encrypted messages to the Cardholder. If “tunneling” is supported, the extension indicates a list of symmetric encryption algorithms that the Payment Gateway or the CA supports. The list is in order of the CA’s algorithm preference.��

Criticality�This extension is non�critical.��

Restrictions���

Name�Format and Value Restrictions�Description��Tunneling� .tunneling�Boolean�Indicates whether “tunneling” is supported by the CA or Payment Gateway. ��Tunneling� .tunnelAlgIDs�Object Identifier�Contains a list (ordered by preference) of symmetric encryption algorithm identifiers that the CA or Payment Gateway supports.��

ASN.1�tunneling EXTENSION ::= {

 SYNTAX TunnelingSyntax

 IDENTIFIED BY id�set�tunneling

}

TunnelingSyntax ::= SEQUENCE {

 tunneling BOOLEAN DEFAULT TRUE,

 tunnelAlgIDs TunnelAlg

}

TunnelAlg ::= SEQUENCE OF OBJECT IDENTIFIER��

�SETExtensions

Overview�The SETExtensions private extension lists the SET message extensions for payment instructions that the Payment Gateway supports. The Cardholder checks the Payment Gateway certificate prior to including critical message extensions in the payment instructions. Message extensions are indicated by Object Identifiers. ��

Criticality�This extension is non�critical.��

Restrictions���

Name�Format and Value Restrictions�Description��SETExtensions�.SETExtensionsSyntax�Object Identifiers�List of Object Identifiers pointing to the message extensions the Payment Gateway supports.��

ASN.1�setExtensions EXTENSION ::= {

 SYNTAX SETExtensionsSyntax

 IDENTIFIED BY { id�set�setExtensions }

}

SETExtensionsSyntax ::= SEQUENCE OF OBJECT IDENTIFIER��

�Section 4�Certificate Profiles

Certificate Types

Summary�� REF _Ref368384711 * MERGEFORMAT �Table 22� provides a complete list of all certificates needed in SET.��

Entity�digital�signature�key encipher�ment/data encipherment�keyCert�signature�CRL�signature��Cardholder�X�����Merchant�X�X����Payment Gateway�X�X����Cardholder Certificate Authority�X�X�X���Merchant Certificate Authority�X�X�X���Payment Certificate Authority�X�X�X�X��Geo�political Certificate Authority�X��X�X��Brand Certificate Authority���X�X��Root Certificate Authority���X�X��Table � SEQ Table * ARABIC �22�: Certificate Types

Combining entities�The CCA, MCA, and PCA do not necessarily require three distinct certificates if they are integrated functions. A single signature certificate could contain two or three different Certificate Types.��

Combining KeyUsage functions�The various CAs do not necessarily need a different certificate for signing certificates and for signing CRLs. The KeyUsage field may contain:

both the keyCertSign and the offLineCRLSign privilege, or

both the keyEncipherment and dataEncipherment.

No other functions can be combined into one certificate.��

�Required End Entity Certificate Extensions

�Cardholder

Certificate�Merchant

Certificate�Gateway

Certificate ��X.509 Extension�Signature�Signature�Key Encipherment�Signature�Key Encipherment��AuthorityKeyIdentifier�X�X�X�X�X��KeyUsage�X�X�X�X�X��PrivateKeyUsagePeriod�X�X��X���CertificatePolicies�X�X�X�X�X��SubjectAltName�O�O�O�O�O��BasicConstraints�X�X�X�X�X��IssuerAltName�O�O�O�O�O��Private Extension�������HashedRootKey�������CertificateType�X�X�X�X�X��MerchantData��X�X����CardCertRequired�����X��Tunneling�����X��SETExtensions�����X��X = Required

O = Optional

Table � SEQ Table * ARABIC �23�: Required End Entity Certificate Extensions

�Required CA Certificate Extensions

�CA�Root CA��X.509 Extension�Digital Signature�Certificate Signature�Key Encipher-ment�CRL Signature�Certificate &

CRL Signature��AuthorityKeyIdentifier�X�X�X�X���KeyUsage�X�X�X�X�X��PrivateKeyUsagePeriod�X�X��X�X��CertificatePolicies�X�X�X�X�X��SubjectAltName�O�O�O�O�O��BasicConstraints�X�X�X�X�X��IssuerAltName�O�O�O�O�O��Private Extension�������HashedRootKey�����X��CertificateType�X�X�X�X�X��MerchantData�������CardCertRequired�������Tunneling���X����SETExtensions�������X = Required

O = Optional

Table � SEQ Table * ARABIC �24�: Required CA Certificate Extensions

�Chapter 5�Certificate Revocation List and BrandCRLIdentifier

Chapter Overview

Introduction�This chapter describes the use of the BrandCRLIdentifier and the X.509 Certificate Revocation List (CRL) in SET. The CRL is a mechanism defined by X.509 for publicizing and distributing lists of revoked, unexpired certificates. Each CA (except the MCA and CCA) will maintain a CRL. All CAs will distribute CRLs. The BrandCRLIdentifier (BCI) is defined by SET and contains a list of all the current CRLs within a given brand. Whenever a CA issues a new CRL, the associated BCI is updated. The BCI is distributed in all downstream messages. Possession of the BCI and the CRLs it identifies ensures that an End Entity is screening certificates against the latest revocation information.��

Organization�Chapter 5 includes the following topics:

X.509 CRL Data Definitions,

CRL Extensions,

CRL Validation, and

BrandCRLIdentifier.��

�X.509 CRL Data Definitions

Overview�Each CA in SET other than the CCA and MCA is responsible for maintaining and distributing a CRL. A CA is responsible for revoking compromised certificates that it generated and signed. The CA will place the serial numbers of compromised certificates on its CRL. The CA is identified within the CRL by its distinguished name, and the CRL is signed by the CA.��

CRL contents�Each CA CRL contains the following information:

the CRL Number, where the number increases with each new CRL generated (included in the CRLNumber Extension),

a list of serial numbers of revoked certificates,

the date when each certificate was revoked,

the dates when the CRL was generated and when it expires (and a new CRL is in effect),

the distinguished name of the CA (that maintains this CRL and generated the revoked certificates),

the issuer and serial number of the CA certificate that was used to sign this CRL (included in the authorityKeyIdentifier extension).

The table on the next page defines the format and value restrictions for each field in the X.509 CRL.��Continued on next page

��styleref "Map Title"�X.509 CRL Data Definitions�, continued

Name�Format and Value Restrictions�Description��CRL� .version�Integer; V2�Indicates the CRL version, always 2.��CRL� .signature� .algorithmIdentifier�OID and type�Defines the algorithm used to sign the CRL.��CRL� .Issuer�Name�Contains the subject DN of the CA that issued the revoked certificate. Shall match the value in the Subject Name in the CA Certificate.��CRL� .thisUpdate�UTC Time�Specifies when the CRL was generated.��CRL� .NextUpdate�UTC Time�Specifies when the CRL expires.��CRL� .revokedCertificates� .certSerialNumber�Integer�The serial numbers of the revoked certificates.��CRL� .revokedCertificates� .revocationDate�UTC Time�The date of revocation.��CRL� .revokedCertificates� .extensions�Extensions�Not used in SET.��CRL� .extensions�Extensions�Two extensions are supported in this field: CRLNumber and AuthorityKeyIdentifier.��Table � SEQ Table * ARABIC �25�: X.509 CRL Data Definitions

Continued on next page

��styleref "Map Title"�X.509 CRL Data Definitions�, continued

CAs maintaining CRLs�The following CAs are required to maintain CRLs in SET:

Root CA � To support unscheduled replacement of the Root certificates, or brand CA certificates.

Brand CAs � To support the unscheduled replacement or termination of a CA certificate issued by the brand CA.

Geopolitical CAs � To support the unscheduled replacement of CCA, MCA, or PCA entities.

Payment Gateway CAs � To support the unscheduled replacement of Payment Gateway key�exchange certificates.��

CA CRL Extensions�The following extensions are required in each CRL for each CA in the SET hierarchy:

���PCA�Geopolitical

CA�Brand CA�Root CA��X.509 Extension������AuthorityKeyIdentifier�X�X�X�X��CRL Number�X�X�X�X��

CRL distribution to Cardholders and Merchants�CRLs are distributed to Cardholders and Merchants within the CRL field of the PKCS #7 SignedData. An entity in the SET protocol shows the CRLs it’s holding by putting the Thumbprints in the first upstream request message. The recipient checks the Thumbprints and includes any missing CRLs in its downstream response message.��

CRL distribution to CAs and Payment Gateways�CRLs are distributed to CAs and Payment Gateways using the distribution message specified starting on page � PAGEREF sectBCIRetrieval �259�.��Continued on next page

��styleref "Map Title"�X.509 CRL Data Definitions�, continued

CRL update�A new CRL is created whenever a certificate is revoked and the list shall be updated. When the new CRL is created, any certificates on the list which have expired may be removed. The updated CRL will contain the complete list of all unexpired, revoked certificates that the CA issued. The new CRL will be delivered to the brand for inclusion on the BrandCRLIdentifier as specified starting on page � PAGEREF sectCRLDistribution �256�. ��

�CRL Extensions

Overview�The following X.509 extensions are used with SET CRLs:

AuthorityKeyIdentifier

CRLNumber��

Authority KeyIdentifier�The AuthorityKeyIdentifier extension is used the same for CRLs as for Certificates. See page � PAGEREF map_AuthorityKeyID_Extn �215�.��

CRLNumber�The CRLNumber extension contains a single integer value. The CA signing the CRL is required to increment the CRL number each time a new CRL is issued. This extension is non�critical.��

CRLNumber restrictions���Name�Format and Value Restrictions�Description��cRLNumber�Integer�As defined above. ��

CRLNumber ASN.1�cRLNumber EXTENSION ::= { �� For use in CRLs only

 SYNTAX CRLNumber

 IDENTIFIED BY id�ce�cRLNumber

}

CRLNumber ::= INTEGER (0..MAX)��

�CRL Validation

Overview�This section defines the rules for validation of CRLs.��

Validation of the CRL�The following shall be verified:

The signature shall be validated.

Use the AuthorityKeyIdentifier CRL extension to identify the correct signature certificate.

The KeyUsage extension in the signing certificate shall indicate CRLsign (6).

The IssuerDN in the CRL shall match the subjectDN of the certificate used to verify the signature.

The IssuerDN and revoked certSerialNumber are compared with the certificate being validated.��

Checking Certificates against a CRL�The following validation shall be performed to determine if a given certificate is included on a CRL:

The IssuerDN of the certificate in question shall match the IssuerDN field in the CRL.

The certSerialNumber shall match the revokedCertificates.certSerialNumber field in the CRL.��

Replacement of older CRLs�Existing CRLs from the same IssuerDN may be deleted when a CRL with a higher value in the CRLNumber has been successfully validated.��

�BrandCRLIdentifier

Overview�The BrandCRLIdentifier is a structure defined by SET and used to identify all current CRLs for CAs under the domain of a given brand. The BCI is maintained by the Brand CA. The BCI contains a list of CRL numbers. It is distributed in all downstream response messages. An entity receiving the BCI shall verify that it holds all of the CRLs on the list. The BCI is updated every time a CA within the Brand’s sub�trees updates a CRL. The BCI is signed by the Brand CA. Each brand shall maintain one BCI. ��

Contents of BCI�The BrandCRLIdentifier contains the following information:

the BCI Number (increases with each new BCI),

the Brand Name,

the validity period,

the list of CRL Numbers (from the CRL Number Extension),

the list of distinguished names of the CAs that issued the CRLs, and

the issuer and serial number of the Brand CA certificate that was used to sign this BCI (included in an extension).

The BCI is signed by the Brand CA using the private key corresponding to the CRLSign certificate.��

Entities on BCI�The entries on a BCI consist of certificate subject names of the following SET entities:

Root CA

Any brand CA

Geopolitical CAs

Payment Gateway CA��Continued on next page

��styleref "Map Title"�BrandCRLIdentifier�, continued

BCI distribution to Cardholders and Merchants�BCIs are distributed to Cardholders and Merchants within downstream response messages. An entity in the SET protocol indicates which BCI it’s holding by putting its Thumbprint in an upstream request message. The recipient checks the Thumbprint and includes the new BCI, if its Thumbprint is not present, in its downstream response message.��

BCI distribution to CAs and Payment Gateways�BCIs are retrieved by CAs and Payment Gateways from the brand designated CA via a distribution message as specified starting on page � PAGEREF sectBCIRetrieval �259�. ��

BCI updates�BCIs are generated on a scheduled interval that will be set by the brand’s policy.��

BCI processing�The processing of a BCI specified CRL is only required when the certificate path goes through one of the entries in the BCI.��Continued on next page

��styleref "Map Title"�BrandCRLIdentifier�, continued

Restrictions���

Name�Format and Value Restrictions�Description��BrandCRLIdentifier� .version�Integer; V1�Indicates the BCI version. Always 1.��BrandCRLIdentifier� .sequenceNum�Integer�Increasing sequence number. The higher the sequence number, the more recent the BCI.��BrandCRLIdentifier� .brandName�Name�The BrandName of the BCI.��BrandCRLIdentifier� .bciNotBefore� �Generalized Time�Specifies when the BCI becomes valid.��BrandCRLIdentifier� .bciNotAfter��Generalized Time�Specifies when the BCI expires.��BrandCRLIdentifier� .crl�ID� .issuerName�Name�The IssuerName of a CRL that needs to be used in signature validations.��BrandCRLIdentifier� .crl�ID� .crlNumber�Integer�The value of the CRLNumber extension of the CRL.��BrandCRLIdentifier� .extensions�Extensions�The only extension used in the BCI is AuthorityKeyIdentifier. The same restrictions are applied as in its use in CRLs and certificates. See page � PAGEREF map_AuthorityKeyID_Extn �215�.��AlgorithmIdentifier� .algorithm�OID���AlgorithmIdentifier� .parameters�Null���Hash�Bit string�The signature over the BCI.��

�Chapter 6�CA to CA Messages

Chapter Overview

Organization�This chapter addresses the following topics:

CA to CA Certificate Requests and Responses

CRL Distribution to brand designated CAs

BCI Retrieval by a CA��

�Section 1�Certificate Requests and Responses

Certificate Requests and Responses

CA Certificate request/

response overview�This section defines the protocol used by CAs to request certificates from a superior CA and for the superior CA to send generated certificates to a subordinate CA. A PKCS #10 CertificationRequest is used to submit a certificate request. After a certificate is generated by the CA, it is returned to the subordinate CA in a PKCS #7 SignedData. ��

Responsibility for generating certificates�Different entities are responsible for signing different certificates, as described below.��

Certificate for:�Is generated and signed by:��Brand CA�Root CA��Geopolitical CA�Brand CA��CCA, MCA, or PCA�Geopolitical CA, if there is a Geopolitical CA covering the subject CA, otherwise, Brand CA��

Certification request format�Messages from a CA requesting a certificate shall be formatted in accordance with the CertificationRequest specified in PKCS #10, version 1.0. The PKCS #10 shall be encoded and wrapped in a manner appropriate to the agreed transport mechanism. Transport of the PKCS #10 from the subordinate CA to the superior CA shall be coordinated out of band. ��

Certification request Generation�The CertificationRequest is self�signed and contains the public key, subject DN, and attributes that the signing CA will certify. The subject DN shall comply with the Certificate Subject Name Formats specified on pages � PAGEREF certSubNameFormat1 �210� and � PAGEREF certSubNameFormat2 �211�. ��Continued on next page

��styleref "Map Title"�Certificate Requests and Responses�, continued

Extensions to the certificate�The certification request message includes information that is to appear in the certificate extensions; this information is carried in attributes in the PKCS #10 request. Attributes corresponding to the following extensions shall appear in the request based upon the CA type:

Key Usage

Certificate Type

Tunneling

Private Key Usage Period

Subject Alternate name

Finally, the additional policy attribute may appear in the request to indicate policy information for the certificate. The additional policy is defined on page � PAGEREF addlPolicyQual �221�. The values for the attributes shall be set as specified starting on page � PAGEREF sectX509exts �214�.

Table 9 shows the attributes which are required or optional in the CertificationRequest based upon the CA type and the key usage. ��

�CCA, MCA, or PCA�Geopolitical or Brand CA��SET Attribute�Digital Signature�Certificate Signature�Key Encipherment�CRL Signature�Certificate &

CRL Signature��KeyUsage�X�X�X�X�X��PrivateKeyUsagePeriod�X�X��X�X��AdditionalPolicy�O�O�O�O�O��SubjectAltName�O�O�O�O�O��CertificateType�X�X�X�X�X��Tunneling���X����X = Required

O = Optional

Table 9: Required Certification Request Attributes

�Certificate Requests and Responses, continued

Certification Request Processing �Upon receipt of a CertificationRequest, the CA shall verify the request and generate a response as follows:��Step�Action���Verify the authenticity of the CertificationRequest using the Brand specified procedure. ���Verify the signature using the public key included in the request.���Verify that the subject Distinguished Name complies with the Certificate Subject Name format specified on pages � PAGEREF certSubNameFormat1 �210� and � PAGEREF certSubNameFormat2 �211�. ���Based on the certificate type and key usage attributes, verify that the required attributes have been included as detailed in Table 9. ���For signature certificates, verify that the requested PrivateKeyUsagePeriod is within the Validity dates of the signing CA and that the notBefore date in the requested PrivateKeyUsagePeriod is within the PrivateKeyUsagePeriod of the signing CA.���If any of the above validation steps fail, the certificate shall not be generated and this shall be communicated out of band. ���If validation is successful, the certificate shall be generated using the attributes included in the request. The generated certificate and its chain shall be placed in the certificates portion of SignedData. The content of SignedData will be empty and is therefore not signed.���The generated certificate and its chain are placed within SignedData which is placed within a Content wrapper. This is then encoded and wrapped in a form suitable for the agreed transport mechanism. The transport of the Certification Response is outside of the scope of the SET specification. Note: This is not a SET message and will not be wrapped in a SET Message Wrapper.��

�Section 2�CRL Distribution

CRL Distribution

Overview�A CRL is a mechanism defined by X.509 for publicizing and distributing lists of revoked, unexpired certificates. Each CA (except the MCA and CCA) relating to the Brand CA through the brand’s designated CA is responsible for maintaining and delivering CRLs to the brand’s designated CA when they are created. This section describes the mechanism for the CA to reliably deliver the CRL to the brand’s designated CA. ��

CRL Updates�Whenever the Root CA updates its CRL, it shall distribute the CRL to each of the brands. Whenever a subordinate CA updates its CRL it shall distribute the CRL to its brand CA. The brand’s designated CA shall provide an agreed transport mechanism through which the related CAs can send CRL Update messages.��

Generate CRL Notification Message�CRLs shall be distributed to the brand designated CA within the SignedData portion of the CRLNotification message as follows: ��

Step�Action���Build CRLNotificationTBS:

Populate the Date with the current date

Populate the CRLThumbprint with the thumbprint of the included CRL���Sign the content using the notifying CA’s digital signature certificate. Set the content type to id�set�content�CRLNoticationTBS.���Insert the new CRL in the CRLs portion of SignedData; insert the CRL’s and the signing certificate’s certificate chain in the certificate portion of the message.���Encode and wrap the signed CRLNotification message in a form suitable for the agreed transport mechanism. Note: this is not a SET message and will not be wrapped in a SET Message Wrapper. DER encode SignedData and place in a MIME wrapper. ��Continued on next page

�CRL Distribution, continued

CRL Notification Message Contents�The following fields are in the CRL Notification Message:��

Field Name�Description��CRLNotification�S(CA, CRLNotificationTBS)��CRLNotificationTBS�{ Date, CRLThumbprint }��Date�The date on which the message is generated.��CRLThumbprint�Thumbprint for the CRL included in the CRLs portion of the SignedData. ��

Receive CRL Notification Message�Upon receipt of the CRL Notification message, the brand’s designated CA validates and processes the message as follows: ��

Step�Action���If the Date is earlier than that in any previous CRL received from this CA, discard the message and respond to the issuing CA with a SET Error message with ErrorCode set to badDate.���If the CRLThumbprint does not match that for the CRL included in the CRLs portion of the SignedData, discard the message and respond to the issuing CA with a SET Error message with ErrorCode set to thumbsMismatch.���Store the modified CRL and transmit to the Brand CA for inclusion with a subsequent BCI Distribution Message. ��Continued on next page

�CRL Distribution, continued

Generate Response message�The brand’s designated CA shall generate a CRL Notification Response message as follows:��

Step�Action���Populate CRLNotificationResTBS:

Include the date from the CRLNotification message..

Include the Thumbprint of the received CRL. ���Sign the content using the brand designated CA’s digital signature certificate. Set the contentType to id�set�content�CRLNotificationResTBS.���Encode and wrap the signed CRLNotificationRes message in a form suitable for the agreed transport mechanism. Note: this is not a SET message and will not be wrapped in a SET Message Wrapper. Send the CRL notification response message back to the CA.��

CRL Notification Response Message Contents�The following fields are in the CRL Notification Response Message:��

Field Name�Description��CRLNotificationRes�S(CA, CRLNotificationResTBS)��CRLNotificationResTBS�{ Date, CRLThumbprint }��Date�Copied from the CRLNotification Message.��CRLThumbprint�Thumbprint for the CRL copied from the CRLNotification Message.��

Response message Verification�Upon receipt of the CRL Notification Response message, the CA shall verify that the date and the thumb of the received CRL match those in the corresponding CRLNotification message. If these are invalid, a SET error message shall be returned and the CRL shall be re�posted in a CRLNotification request message. ��

�Section 3�BCI Retrieval

BCI Retrieval

Overview�A BrandCRLIdentifier is a list of the up�to�date CRLs corresponding to all of the CAs under the brand hierarchy. The brand’s designated CA is responsible for maintaining an up�to�date BCI and providing a mechanism for CAs and Payment Gateways to retrieve the BCI and the associated CRLs. Each CA and Payment Gateway under a Brand CA is responsible for downloading, storing and providing access to an up�to�date BCI and the associated CRLs in their response messages.��

BCI Host�Each SET brand shall maintain an up�to�date version of the BCI and all CRLs referenced by the BCI in a BCI Distribution Message, and the brand’s designated CA shall provide one or mechanisms whereby this message can be downloaded by the supported CAs and the Payment Gateways. The CAs and Payment Gateway are responsible for retrieving the BCI Distribution message on a daily basis.��

BCI Distribution Message�The BCI shall be provided for distribution by the brand’s designated CA in a BCI Distribution message. The BCI Distribution message is a signed message containing the current date, BCI, and associated certificates and CRLs. The date ensures the current validity of the BCI. The brand’s designated CA shall generate a new BCI Distribution message daily. Note: the BCI is not generated daily, just the distribution message. ��Continued on next page

��styleref "Map Title"�BCI Retrieval�, continued

BCI Distribution Message Generation�The BCI Distribution message shall be generated by the brand’s designated CA as follows:��

Step�Action���Populate BCIDistributionTBS:

Populate Date with the current date.

Include the latest BCI. ���Sign the content using the CA digital signature certificate. Set the contentType to id�set�content�BCIDistributionTBS. In the CRLs portion of SignedData, insert all of the CRLs listed on the BCI. In the certificates portion, insert all of the certificates necessary to verify all of the CRLs.���Encode and wrap the signed BCIDistribution message in a form suitable for the agreed transport mechanism. Note: This is not a SET message and will not be wrapped in a SET Message Wrapper. ��

BCI Distribution Message Contents�The following fields are in the BCI Distribution Message:��

Field Name�Description��BCIDistribution�S(CA, BCIDistributionTBS)��BCIDistributionTBS�{ Date, BrandCRLIdentifier }��Date�The date on which the message is generated.��BrandCRLIdentifier�List of current CRLs for all CAs under the Brand CA, the Brand CA itself and the Root CA.. Signed by the brand’s designated CA. ��Continued on next page

��styleref "Map Title"�BCI Retrieval�, continued

BCI Distribution Message Retrieval�The BCI Distribution message shall be processed by the receiving CA or Payment Gateway as follows:��

Step�Action���Extract the message from any transport specific wrapper and decode. Verify the message signature using the signature certificate of the brand’s designated CA.���If the Date is earlier than that contained in a previously retrieved BCI Distribution Message, discard the message.���If the BrandCRLIdentifier differs from that currently stored, verify the signatures of each of the CRLs listed on the BCI. If the signatures do not verify or CRLs referenced in the BCI are not included in the message, discard the message.���Store the CRLs and the BrandCRLIdentifier for distribution in SET messages.��

Book 2: Programmer’s Guide 		Secure Electronic Transaction Specification

Page � PAGE �120�		May 31, 1997

Secure Electronic Transaction Specification		Book 2: Programmer’s Guide

May 31, 1997		Page � PAGE �119�

�PAGE �120�

Version 1.0

�PAGE �119�

Version 1.0

