## Two-Port Networks

- One-port network:

$$
V=Z \cdot I
$$



- Two-port network:


$$
\begin{aligned}
& V_{1}=Z_{11} \cdot I_{1}+Z_{12} \cdot I_{2} \\
& V_{2}=Z_{21} \cdot I_{1}+Z_{22} \cdot I_{2}
\end{aligned}
$$

$$
[V]=[z] \cdot[I]
$$

## How to Determine Z Parameters?

$$
\begin{aligned}
& \begin{array}{l}
V_{1}=Z_{11} \cdot I_{1}+Z_{12} \cdot I_{2} \\
V_{2}=Z_{21} \cdot I_{1}+Z_{22} \cdot I_{2}
\end{array}{\stackrel{I}{I_{2}=0} Z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} Z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0}} \\
& \square I_{1}=0 \quad Z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0} Z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} \\
& \text { Reciprocity: } \\
& Z_{12}=Z_{21}
\end{aligned}
$$

## Y Parameters

$$
[V]=[Z] \cdot[I] \Rightarrow[I]=[Z]^{-1} \cdot[V] \Rightarrow[Y]=[Z]^{-1}
$$

$$
\begin{aligned}
& I_{1}=Y_{11} \cdot V_{1}+Y_{12} \cdot V_{2} \\
& I_{2}=Y_{21} \cdot V_{1}+Y_{22} \cdot V_{2}
\end{aligned} \stackrel{V_{2}=0}{ } Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0} Y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0}
$$



## Simple Networks


$V_{2}>[\square ? \square ? ?$

## Example: T-Network



## Example: Pi-Network



## ABCD Parameters



1/15/2002

## ABCD Parameters of TL



$$
\left\{\begin{array}{l}
V_{2}=V_{1} \cos \beta l+j I_{1} Z_{0} \sin \beta l \\
I_{2}=j \frac{V_{1}}{Z_{0}} \sin \beta l+I_{1} \cos \beta l
\end{array} \Rightarrow[A B C D]=\left[\begin{array}{cc}
\cos \beta l & j Z_{0} \sin \beta l \\
j Y_{0} \sin \beta l & \cos \beta l
\end{array}\right]\right.
$$

## Series Connection of Two-Port Networks



$$
[Z]=\left[Z_{A}\right]+\left[Z_{B}\right]
$$

## Parallel Connection of Two-Port Networks



## Cascade Connection of Two-Port Networks



